Vis enkel innførsel

dc.contributor.authorRivera Arreba, Irene
dc.contributor.authorLi, Zhaobin
dc.contributor.authorYang, Xiaolei
dc.contributor.authorBachynski-Polic, Erin Elizabeth
dc.date.accessioned2024-01-04T07:41:35Z
dc.date.available2024-01-04T07:41:35Z
dc.date.created2024-01-03T13:36:17Z
dc.date.issued2023
dc.identifier.issn0960-1481
dc.identifier.urihttps://hdl.handle.net/11250/3109679
dc.description.abstractAccurately predicting the evolution of wake is crucial for power output and structural load estimation in wind farms. This study aims to validate the dynamic wake meandering (DWM) model, an efficient mid-fidelity wake model, against large eddy simulation (LES). The predictive capabilities of the DWM model for various wake properties, namely time-averaged wake deficit, mean wake center deflection, amplitude, and frequency spectrum of wake meandering, are comprehensively analyzed using the IEA 15MW reference wind turbine under different yaw and tilt misalignment angles. Two turbulent inflows with varying shear and turbulence intensity levels are considered. The comparison highlights the significance of the filter size () in DWM as a key parameter determining simultaneously the time-averaged wake deflection and meandering amplitude, with optimal values differing for horizontal and vertical wake displacements. When the appropriate values are selected, the implementation of the DWM model in FAST.Farm demonstrates good agreement with LES data, particularly concerning time-averaged wake deficit, wake centerline deflection, and wake meandering amplitude at eight rotor diameters downstream. However, the DWM model tends to overestimate the energy in the lower frequency region with Strouhal’s number less than 0.1 and underestimate the wake oscillation induced by the shear-layer at higher frequencies, even though the wake motion standard deviation is accurately reproduced if the polar grid size is properly adjusted. Furthermore, the influence of the ground effect on downward wake deflection through tilt control is revealed. These findings clearly demonstrate the strengths and weaknesses of the current DWM model and can serve as a reference for the development of advanced wake models.en_US
dc.language.isoengen_US
dc.publisherElsevier B. V.en_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleComparison of the dynamic wake meandering model against large eddy simulation for horizontal and vertical steering of wind turbine wakesen_US
dc.title.alternativeComparison of the dynamic wake meandering model against large eddy simulation for horizontal and vertical steering of wind turbine wakesen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.volume221en_US
dc.source.journalRenewable Energyen_US
dc.identifier.doi10.1016/j.renene.2023.119807
dc.identifier.cristin2219950
dc.relation.projectNorges forskningsråd: 294573en_US
dc.source.articlenumber119807en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal