Show simple item record

dc.contributor.advisorBergna-Diaz, Gilbert
dc.contributor.advisorTorres-Olguin, Raymundo
dc.contributor.advisorSanches-Acevedo, Santiago
dc.contributor.authorSteig, Rune
dc.date.accessioned2023-05-15T17:21:00Z
dc.date.available2023-05-15T17:21:00Z
dc.date.issued2020
dc.identifierno.ntnu:inspera:54192979:34429436
dc.identifier.urihttps://hdl.handle.net/11250/3068057
dc.description.abstractDenne masteroppgaven ser på muligheten til å forbedre den faselåste sløyfen (PLL) som blir brukt i industrien i dag. PLLen er en del av kontrollsystemet i en frekvensomformer (VSC) og blir brukt til å synkronisere to frekvenser. En VSC er en kraftelektronisk komponent som omformer likestrøm til vekselstrøm og omvendt for å sikre en sikker flyt av energi. På grunn av det grønne skiftet er det en stadig økning av fornybare energikilder i kraftnettet. En utfordring med dette er at de store sykrongeneratorene i kullkraftverkene forsvinner. Dette skiftet gjør at det totale treghetsmomentet i kraftnettet reduseres, noe som gjør at kravene til de kraftelektroniske komponentene øker. I spesialiseringsoppgaven [1], ble det oppdaget tre utfordringer knytett til den tradisjonelle PLLen. To av disse tre utforningene har blitt forsøkt løst i denne masteroppgaven. Hovedmålet med dette arbeidet er å løse problemene knyttet til ulineariteter i systemet. Dagens PLLer er designet for et linært system, mens systemene de blir anvendt i er mer komplekse. Tre PLLer som tar ulinearitetene til betrakting har blitt designet ved hjelp av Lyapunov teori samt passivitet teori. I dette arbeidet har den angulære frekvensen som PLLen genererer blitt sett på som et kontrollobjekt. Dette gjør at det trengs to forskjellige angulære frekvenser for å beskrive systemet istedenfor en. En frekvens relatert til nettet, mens den andre er relatert til PLLen. Forskjellen mellom de tre forskjellige PLLene designet i denne oppgaven er i utgangspunktet relatert til hvilken angulær frekvens de ulike tilstandene i systemet er referert til. De tre ulike PLLene designet er sammenlignet med en simpel PLL som blir brukt i industrien i dag. De blir sammenlignet med hensyn til atferden de får når en referanseverdi er endret, i tillegg stabiliteten de viser. På grunn av differanse mellom stabilitetsresultatene og simuleringsresultatene har simuleringsresultatene blitt favorisert på bakgrunn av at det er en mer kompleks representasjon av systemet sammenlignet med likningene brukt i stabilitetsutregningene. I tillegg til dette ble den ene PLLen utviklet også til å kanskje ha en løsning på et av de to andre problemene PLLene har i dag. På grunn av dårlig tid ble dessverre ikke mange nok simulering utført, men uansett viser PLLene gode resultater. Dersom flere og mer krevende simuleringer utføres på de ulike PLLene, kan de i beste fall bli en del av industrien. De ulike PLLene designet i dette arbeidet kommer med et stabilitets-sertifikat siden de oppfyller kravene som trengs for at et system skal være globalt asymptotisk stabilt.
dc.description.abstractSubstituting traditional fossil energy sources with renewable energy sources will require the use of power electronic converters to interface them to the grid, such as the well-known Voltage Source Converter (VSC). This master thesis investigates the possibility to improve the Phase Locked Loops (PLLs) that are currently used in the industry for grid synchronization of VSCs and are a central part of their control strategy. From a stability viewpoint, the PLLs used today seem to be designed for synchronizing converters with strong ac grids, where the frequency can be considered constant and the grid is practically unaffected by disturbances. However, this standard solution has a below par performance when synchronizing with weak grids, making the system more prone to undesired unstable behavior. In order to mitigate this risk, small-signal stability studies are usually carried out on a case-by-case basis in order to find an appropriate control tuning that renders the system stable. However, as small-signal methods are based on linearization around a nominal operating point, the system inherent nonlinearities are neglected in the design, consequently making the VSC and the rest of the system vulnerable under larger disturbances. Hence, a more robust PLL that takes the nonlinearities of the system into account has to be designed. In the specialization project [1], which served as the preliminary groundwork of this master thesis, three challenges associated to the synchronization of the nonlinear model of the VSC and its PLL design were reported; i.e., two related to two different types of system nonlinearities (one trigonometric and a bilinear product), and one related to the unavailability of a state-variable. The work of this master thesis aims to solve two of these three challenges. More precisely, one of the nonlinearities (of trigonometric nature) has been neglected in the model, and consequently in the control design process, to reduce the complexity of the task. Under this approximation, three alternative PLLs have been designed by means of Lyapunov and passivity theories--in order to take into account the remaining system nonlinearity--and compared with a standard PLL used in industry today. In order to design the PLLs, the nonlinear model of the VSC in state-space representation has been validated. It is worth mentioning that in this modeling phase, the angular frequency provided by the PLL, ω_PLL, is treated as a control variable and hence it is different from the angular frequency of the grid, ω_g. This results in two different angular frequencies of the grid; therefore two different Park matrices have to be used in order to represent the system in the two associated synchronous reference frames. The choice regarding which of the two rotating reference frames is associated to the different state variables is what mainly set appart the three alternative PLLs designed. The passivity-based PLLs showed comparable performance with the traditional PLL, but come with the added advantage of a nonlinear stability certificate. Given that in the design process a simplified model was used, the stability of the different PLLs have also been analysed via time-domain simulations. Finally, the most promising PLL alternative out of the three has been identified and further modified to be able to operate without the unavailable state measurement and without compromising the stability proof. The performance results related to this PLL are very promising. However, due to lack of time and resources more simulations and test have to be conducted in order to make available this new alternative PLL to the industry. Preferably simulations with a more complex system, where the PLLs face more challenging tasks have to be made, and an extension of the proof to include the neglected trigonometric nonlinearity.
dc.languageeng
dc.publisherNTNU
dc.titleTowards Energy Synchronization of Two-Level Voltage Source Converters
dc.typeMaster thesis


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record