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Abstract

Substituting traditional fossil energy sources with renewable energy sources will re-
quire the use of power electronic converters to interface them to the grid, such as the
well-known Voltage Source Converter (VSC). This master thesis investigates the possibil-
ity to improve the Phase Locked Loops (PLLs) that are currently used in the industry for
grid synchronization of VSCs and are a central part of their control strategy.

From a stability viewpoint, the PLLs used today seem to be designed for synchronizing
converters with strong ac grids, where the frequency can be considered constant and the
grid is practically unaffected by disturbances. However, this standard solution has a below
par performance when synchronizing with weak grids, making the system more prone to
undesired unstable behavior. In order to mitigate this risk, small-signal stability studies are
usually carried out on a case-by-case basis in order to find an appropriate control tuning
that renders the system stable. However, as small-signal methods are based on lineariza-
tion around a nominal operating point, the system inherent nonlinearities are neglected
in the design, consequently making the VSC and the rest of the system vulnerable under
larger disturbances. Hence, a more robust PLL that takes the nonlinearities of the system
into account has to be designed.

In the specialization project [1], which served as the preliminary groundwork of this
master thesis, three challenges associated to the synchronization of the nonlinear model
of the VSC and its PLL design were reported; i.e., two related to two different types of
system nonlinearities (one trigonometric and a bilinear product), and one related to the
unavailability of a state-variable. The work of this master thesis aims to solve two of these
three challenges. More precisely, one of the nonlinearities (of trigonometric nature) has
been neglected in the model, and consequently in the control design process, to reduce
the complexity of the task. Under this approximation, three alternative PLLs have been
designed by means of Lyapunov and passivity theories–in order to take into account the re-
maining system nonlinearity–and compared with a standard PLL used in industry today. In
order to design the PLLs, the nonlinear model of the VSC in state-space representation has
been validated. It is worth mentioning that in this modeling phase, the angular frequency
provided by the PLL, ωPLL, is treated as a control variable and hence it is different from
the angular frequency of the grid, ωg. This results in two different angular frequencies of
the grid; therefore two different Park matrices have to be used in order to represent the
system in the two associated synchronous reference frames. The choice regarding which
of the two rotating reference frames is associated to the different state variables is what
mainly set appart the three alternative PLLs designed.

The passivity-based PLLs showed comparable performance with the traditional PLL,
but come with the added advantage of a nonlinear stability certificate. Given that in the
design process a simplified model was used, the stability of the different PLLs have also
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been analysed via time-domain simulations. Finally, the most promising PLL alternative
out of the three has been identified and further modified to be able to operate without
the unavailable state measurement and without compromising the stability proof. The
performance results related to this PLL are very promising. However, due to lack of time
and resources more simulations and test have to be conducted in order to make available
this new alternative PLL to the industry. Preferably simulations with a more complex
system, where the PLLs face more challenging tasks have to be made, and an extension of
the proof to include the neglected trigonometric nonlinearity.
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Sammendrag

Denne masteroppgaven ser på muligheten til å forbedre den faselåste sløyfen (PLL)
som blir brukt i industrien i dag. PLLen er en del av kontrollsystemet i en frekvensom-
former (VSC) og blir brukt til å synkronisere to frekvenser. En VSC er en kraftelektronisk
komponent som omformer likestrøm til vekselstrøm og omvendt for å sikre en sikker flyt
av energi.

På grunn av det grønne skiftet er det en stadig økning av fornybare energikilder i
kraftnettet. En utfordring med dette er at de store sykrongeneratorene i kullkraftverkene
forsvinner. Dette skiftet gjør at det totale treghetsmomentet i kraftnettet reduseres, noe
som gjør at kravene til de kraftelektroniske komponentene øker.

I spesialiseringsoppgaven [1] ble det oppdaget tre utfordringer knytett til den tradis-
jonelle PLLen. To av disse tre utforningene har blitt forsøkt løst i denne masteroppgaven.
Hovedmålet med dette arbeidet er å løse problemene knyttet til ulineariteter i systemet.
Dagens PLLer er designet for et linært system, mens systemene de blir anvendt i er mer
komplekse. Tre PLLer som tar ulinearitetene til betrakting har blitt designet ved hjelp av
Lyapunov teori samt passivitet teori. I dette arbeidet har den angulære frekvensen som
PLLen genererer blitt sett på som en kontrollobjekt. Dette gjør at det trengs to forskjellige
angulære frekvenser for å beskrive systemet istedenfor en. En frekvens relatert til nettet,
mens den andre er relatert til PLLen. Forskjellen mellom de tre forskjellige PLLene de-
signet i denne oppgaven er i utgangspunktet relatert til hvilken angulær frekvens de ulike
tilstandene i systemet er referert til.

De tre ulike PLLene designet er sammenlignet med en simpel PLL som blir brukt i in-
dustrien i dag. De blir sammenlignet med hensyn til atferden de får når en referanseverdi
er endret, i tillegg stabiliteten de viser. På grunn av differanse mellom stabilitetsresultatene
og simuleringsresultatene har simuleringsresultatene blitt favorisert på bakgrunn av at det
er en mer kompleks representasjon av systemet sammenlignet med likningene brukt i sta-
bilitetsutregningene.

I tillegg til dette ble den ene PLLen utviklet også til å kanskje ha en løsning på et
av de to andre problemene PLLene har i dag. På grunn av dårlig tid ble dessverre ikke
mange nok simulering utført, men uansett viser PLLene gode resultater. Dersom flere og
mer krevende simuleringer utføres på de ulike PLLene, kan de i beste fall bli en del av
industrien. De ulike PLLene designet i dette arbeidet kommer med et stabilitets-sertifikat
siden de oppfyller kravene som trengs for at et system skal være globalt asymptisk stabilt.
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Chapter 1
Introduction

1.1 Background

The energy demand in the world is increasing and as much as 13 % of the world’s popula-
tion do not have access to electricity [2]. The Paris Agreement aim to strengthen the global
response to the threat of climate changes. Hence, the aim is to keep the global tempera-
ture 2 degrees Celsius above pre-industrial levels, in addition to pursue efforts to keep the
temperature increase to 1.5 degree Celsius [3]. This generation faces a great challenge to
increase the standard of living while dealing with the climate challenges. The fulfillment
of the goals of the Paris Agreement depends on the development of new technology in
addition to decelerate the constant increasing energy consumption.

The transition from traditional fossil energy sources to renewable energy sources is
also of paramount importance if the goals set in the Paris Agreement are to be reached.
In order to reach the 2-degree Celsius goal the share of electricity produced from renew-
able energy would need to rise from 14% in 2015 to 63% in 2050 [4]. Renewable energy
sources such as solar and wind are usually classified as non-dispatchable distribution units
because of their intermittent characteristics and high volatility. Consequently, they are of-
ten paired with different energy storage units to provide adequate power to critical loads.
However, many distributed energy resources (DER) cannot be connected directly to the
grid and must be integrated by use of power electronic converters, such as the two-level
voltage source converter (VSC) [5][6]. Power electronic converters such as the ones men-
tioned above are important enabling technologies in the evolution of the energy grid [7].

A consequence of substituting traditional generation units with renewable energy sources
is lower inertia in the grid [8]. Hence, the energy grid is more vulnerable to faults and fre-
quency variations. A VSC is commonly used in providing bidirectional power flow in
addition to frequency and voltage decoupling between the utility and the grid [9].

In order to interface different DER, an ac/dc power converter such as the VSC has
to synchronize to the frequency of the grid. Today, the most developed synchronization

1



Chapter 1. Introduction

methods are relying on a Phase Locked Loop (PLL). Although PLLs have been used in
many applications for many years, they still have some open challenges which are briefly
discussed in [10].

This master thesis continues the work done in the specialization project [1], where the
operation principle of a VSC and a PLL were investigated. Hence, basic models including
a VSC and different PLLs were tested and compared for both a stiff grid case and a weak
grid case. This thesis will, however, be different in the extent that the scope of the project
is to design an improved PLL from a stability viewpoint. From the specialization project,
three different challenges were identified from the nonlinear synchronization model of the
VSC, which need to be considered in the design of an improved PLL. These challenges
are listed below.

• Trigonometric non-linearity: This nonlinearity appears since two different Park
transformations at two different frequencies become necessary to describe the VSC
synchronization dynamics; one associated with the frequency of the grid ωg, while
the other one associated with the frequency estimated by the PLL, ωPLL.

• Bilinear products nonlinearity: This nonlinearity appears naturally when the es-
timated frequency ωPLL is considered as a control variable instead of a constant.
Thus, the cross-coupling terms in the VSC model will consist on a control variable
multiplying a state variable.

• Angle difference state unavailability: A third problem related to the synchroniza-
tion model of VSC is that the angle difference state variable δ , θPLL − ωgt cannot
be measured in the weak grid case, and therefore is unavailable for use in the con-
trol. This angle is indeed the difference between the two angles used in both Park
transformations.

1.2 Objectives
In this master thesis, the main objective is to:

Further investigate the challenges of the nonlinear synchronization model of VSCs
connected to weak grids and synthesize an alternative PLL with large signal stability guar-
antees able to cope with (most of) them.

To achieve the main objective, specific objectives have been set and are listed below.

• Represent and validate the system using the Port-Hamiltonian formalism, to high-
light the role of the energy in the system dynamics and use it as a starting point for
the control design. Due to the fact that the angular frequency provided by the PLL
is treated as a control parameter the port-Hamiltonian representation for switched
power converters from [11] will be used.

• Design different PLLs with large signal guarantees by directly applying the PI-
Passivity-based Control result from [11], which has proven effective at stabiliz-
ing systems with bilinear products nonlinearities; i.e., the second challenge listed
above.

2



1.3 Limitation of Scope

• Simulate and compare the different PLL alternatives with respect to stability and
performance.

• Select the most promising PLL alternative and further modify it to try to solve one of
the other remaining two challenges. Given that the challenge related to the trigono-
metric nonlinearity was considered the most challenging, the focus was then di-
rected at solving the third challenge, related to the angle difference state unavail-
ability.

• If time allows, the most promising PLL will be tested in the National Smart-Grid
Laboratory.

• Evaluate the process and lay the foundation for further work on this area.

1.3 Limitation of Scope
Due to the complexity of the work, it is necessary to limit the scope in order to be able to
solve the problems. The limitations made in this work are listed below.

• It is worth mentioning that when designing the alternative PLLs, the focus will be
entirely on their structure and not on their tuning. This means that the tuning of the
different control parameters of the PLLs is not emphasized in this work. Indeed,
this carries as consequence the possibility of poor dynamical performances of the
control system, even if stability is achieved. However, this lack of optimal tuning is
present in all the PLLs compared, resulting in a fairer comparison between them.

• In order to reduce the number of states describing the system, the system is treated
as balanced. This yields only the d and q component of the SRF instead of d,q and
0.

• Additionally, a constant dc-source is considered to be connected to the dc-terminals
of the converter, which also reduces the number of states, and eliminates an addi-
tional nonlinear challenge related a potential dc capacitor voltage state and duty-
cycles.

• The control design in this master thesis is heavily based on the control result of [11],
which is successful in stabilizing power electronic dynamics with bilinear product
nonlinearities. However, this result requires to neglect the trigonometric nonlinear-
ity which is present in the synchronization model of VSCs, and is one of the main
limitations of this thesis.

1.4 Report Outline
In order to cover the objectives, the thesis is divided into six chapters. The first chap-
ter presents the introduction which includes the background, objectives and limitation of
scope.
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Chapter 1. Introduction

In Chapter 2, the description of the system is presented as well as general informa-
tion regarding the most important components of this work. Chapter 2 also introduces
how the systems are affected by what angular frequency the different states are related to.
The design of the different PLLs are illustrated in Chapter 3, in addition to the necessary
theoretical background regarding the design. The procedure of the design is also applied
on a known system in order to compare the results. Further, Chapter 4 and Chapter 5
presents the performance results in addition to the theoretical approach on the stability
results. Chapter 4 is related to solving the challenge related to the bilinear product nonlin-
earity, while Chapter 5 consists to solving the challenge related to angle difference state
unavailability. Finally, Chapter 6 including the conclusion and further work is suggested
based of the findings in the work.

4



Chapter 2
Modeling of 2L-VSC for
synchronization

In order to design the different alternative PLLs, the first step is to obtain an appropriate
model using state-space representation, starting from first principles. The transformation
from the natural abc-reference frame to two dq synchronous reference frames –associated
to the real and estimated frequencies– is presented in this chapter. Furthermore, the re-
sulting dynamical system will be expressed using the port-Hamiltonian representation, as
this is key to apply the control result of [11]. Furthermore, general information about the
system’s components are also presented in this chapter.

2.1 System Representation

The system of interest in this project is illustrated in Figure 2.1. The dc-source on the
dc side of the VSC, Vdc, is assumed constant for simplicity. In reality, the dc-source can
represent a battery or the dc link in a back-to-back converter. The standard approach for
controlling VSC is based on current control loops in the dq SRF, working together with
a PLL. The output of the current controller is then modulated with a PWM which is later
provided to the VSC. The VSC generates a three-phase voltage eabc, as sketched in Figure
2.1. Part of the LCL-filter is used to emulate the weak grid interface, where Lg and Rg are
respectively representing the weak grid Thevenin equivalent inductance and the resistance.
Since the thesis is a cooperation between NTNU and SINTEF energy, it is convenient to
use somewhat the same values on the parameters they use in their common National Smart
Grid Laboratory. The parameters used in this work is listen in Table (2.1).
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Chapter 2. Modeling of 2L-VSC for synchronization

+

- iV

eabc Lf1 Rf1

igC

Vgrid

g1−6

Vf

ic

Lg Rg

Figure 2.1: The system analysed.

Table 2.1: The parameter values used for the simulations in this work.

Value Unit
Vdc 700 V
Vac 400 V
f 50 Hz
Lf 3.82 mH
Lg 300 µH
Rf 0.05 Ω
Rg 0.05 Ω
C 60 ηF
fsw 10 kHz
fsamp 10 kHz
Kp CC 350 [-]
Ki CC 45 500 [-]
KpPLL 180 [-]
KiPLL 1437 [-]
τ 1 [-]

The state-space model of the 2L-VSC in the stationary reference frame with abc coor-
dinates is given in Eq. (2.1) - Eq. (2.3) and is easily found by applying Kirchhoff’s laws
on the system illustrated in Figure 2.1

The different parameters in the equations are illustrated in Figure 2.1, and the values
are listed in Table 2.1.

Lf
d

dt

iv,aiV,b
iv,c

 =

eaeb
ec

−Rf
iv,aiv,b
iv,c

−
V 0

a

V 0
b

V 0
c

 (2.1)

C
d

dt

V 0
a

V 0
b

V 0
c

 =

iV,aiV,b
iV,c

−
ig,aig,b
ig,c

 (2.2)
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2.2 PLL

Lg
d

dt

ig,aig,b
ig,c

 =

V 0
a

V 0
b

V 0
c

−Rg
ig,aig,b
ig,c

−
Vg,aVg,b
Vg,c

 (2.3)

2.1.1 Current Controller

The design of the current controller is not the main focus of this work. However, the basic
PLL developed in the specialization project [1] is illustrated in Figure 2.2. Using the cross-
coupling PI controllers and feed-forward the system is reduced from a 2×2 MIMO system
into two linear SISO- systems. The current controller controls the voltage eabc and hence
the current iv . The outputs of the current controller, md and mq , are later transformed
back into the stationary reference frame in order to generate the PWM signals.
In order to focus on the grid synchronization, a power controller is not included in the
control system. Implying that the reference currents in the current controller have to be
set manually. The current controller used in this work, however, does not include the
feed-forward and cross-coupling terms because of the result in Chapter 3.2.3.

i
ref
d

Kp(1+Tis)
Tis

+
−

+
+

PI

Vf,d

−

+
+

PI

+
Kp(1+Tis)

Tis

+

−

i
ref
d

Vf,q

ω

Lf

Lf

id

iq

×

×

VDC

md

mq

÷

÷

Figure 2.2: The basic current controller designed in the specialization project [1].

2.2 PLL
Grid synchronization is a vital part of the control system of a voltage source converter, and
PLLs are often used for this purpose [12]. PLLs are used for grid synchronization, and
three alternative PLLs are designed in this work.

The basic structure of a PLL often consists of a phase detector, a low-pass filter, a
variable- frequency oscillator and feedback [13]. The PLLs used in this work are working
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Chapter 2. Modeling of 2L-VSC for synchronization

in the synchronous reference frame, which means that the three-phase voltage is decom-
posed into two DC signals through a park transformation. This has several advantages,
and one of them is the convenient use of PI controllers in the current controller.

As described in [1], the PLL estimates the grid frequency and synchronizes the modu-
lation frequency with the frequency of the grid. Figure 2.3 illustrates the working principle
of the PLL. If the voltage vector, V, is aligned with the d-axis, the q-component of the volt-
age equals zero. The PLL estimates the frequency of the grid and by use of the internal
feedback, the modulation frequency is approaching the grid frequency. If the voltage vec-
tor, V, is higher than the d-axis component the angular frequency is decreased and on the
contrary, if the voltage vector is lower than the d-axis the angular frequency is increasing.
This repeats until the voltage vector equals the d-axis component.

q

β

d

α

V

θ

∆θ

Vq

ω = 2πf

Figure 2.3: An illustration of the working principle of a phase-locked loop (PLL).

When the q-axis component equals zero the active and reactive power flow can be
controlled linearly with respect to Id and Iq . The active and reactive power relationship is
illustrated in Eq. 2.4 and Eq. 2.5. Thus, if Vq = 0, the active power can be controlled with
Id and reactive power can be controlled with Iq .

P =

[
Vd
Vq

] [
1 0
0 1

] [
id
iq

]
(2.4)

Q =

[
Vd
Vq

] [
0 −1
1 0

] [
id
iq

]
(2.5)

The structure of on of the standard PLL used in this thesis as a reference for comparison
is shown in Figure 2.4[14]. The angle difference δ is estimated as the arc tangent of the
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2.3 Park Transformation

relationship between Vq and Vd. To gain more control of the PLL, a parameter τ is included
in the feedback loop. Hence, the contribution from the δ term can be controlled by tuning
τ . For the three alternative PLLs designed in this work, the additional terms are included in
the summation before the PI controller. For the basic PLL this summation has no practical
effect but is advantageous for illustration.

+

+ PI(s)

abc

dq0

VdVq

V0

atan2− +

τ

ω

θδ0

θ

Figure 2.4: The base PLL for this project.

Where δ0 is the calculated steady state value of δ. For a strong grid case, δ is correctly
the arctangent relationship between Vq and Vd and is available for measurement. Never-
theless, for a weak grid case, the relationship is only an approximation, and therefore δ is
unavailable. This is further elaborated in the next section.

2.3 Park Transformation
In this work, PI-controllers have been used in the current controller, and therefore, Park
transformations are required to transform the voltage and current signals from their natu-
ral abc coordinates into the synchronous reference frame dq coordinates. This allows for
treating the resulting signals as dc-signals. More precisely, the Park transformation first
transforms a three-phase signal shifted 120 degrees into a two-phased signal shifted 90
degrees, and after that make the reference signal rotate with the same speed as the two
signals, providing two constant signals.

The matrices used in order to conduct the park transformation are illustrated in Eq.
(2.6) for a generic variable x, and its inverse in Eq. (2.7), which is used to transform from
SRF to the stationary reference frame.xdxq

x0

 = 2/3

 cos(θ) cos(θ − 2π
3 ) cos(θ + 2π

3 )
− sin(θ) − sin(θ − 2π

3 ) − sin(θ + 2π
3 )

1
2

1
2

1
2

xaxb
xc

 (2.6)

xaxb
xc

 =

 cos(θ) − sin(θ) 1
cos(θ − 2π

3 ) − sin(θ − 2π
3 ) 1

cos(θ + 2π
3 ) − sin(θ + 2π

3 ) 1

xdxq
x0

 (2.7)
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Chapter 2. Modeling of 2L-VSC for synchronization

It is worth mentioning that two different frequencies are used to describe the system in
order to capture the synchronization mechanism an allow for a reformulation of the PLL
design. One is related to the (a priori unavailable) angle of the grid ωgt, and the other one
is related to angle θPLL estimated by the PLL, which in turn is associated to the estimated
frequency ωPLL. Often, the system is modelled with only one frequency, which implies the
assumption that the PLL is able to provide the grid frequency at all times, thus ignoring
the synchronization dynamics.

As a consequence of having two different frequencies describing different states in
the system is that one state variable appearing in the differential equation describing the
dynamics of a second state may be using different Park transformations, and hence referred
to different SRFs. This results in a multiplication of the different Park matrices yielding
the relationship expressed in Eq. (2.8) and Eq. (2.9), with

δ = θpll − ωgt.

This relationship was also reported in the specialization project [1] and is one of the
three challenges related to the PLL, as it represents a trigonometric nonlinearity.

T (δ) = Pθpll · P−1ωgt =

[
cos(δ) − sin(δ)
sin(δ) cos(δ)

]
(2.8)

T>(δ) = Pωgt · P−1θpll
=

[
cos(δ) sin(δ)
− sin(δ) cos(δ)

]
(2.9)

In this work, three different PLLs have been designed, and what differs the different
PLLs is what frequency the different states are referred to.

2.3.1 Traditional Modeling
In order to better illustrate what differs the synchronization modeling of VSCs from the
traditional approach, the traditional model with only one Park transform is also included.
In this approach, the angular frequency provided by the PLL, ωpll, is treated as equal to
the angular frequency of the grid, ωg at any given time; i.e., ωg = ωpll. As discussed in [1],
this consideration is only correct in steady state (if δ̇ = 0). Consequently, once the system
is out of its steady state, this consideration is no longer strictly correct. Indeed, the larger
disturbance affecting the system, the higher the error.

In the synchronous reference frame, the traditional way of describing the system is
expressed in Eq. (2.10) - Eq. (2.12). There is a total of six states describing the system,
and the system has only one frequency. The PLLs used today are often derived from
these equations. For a stiff grid, this interpretation might be sufficient, since the grid is
nearly unaffected by disturbances. For a weak grid, however, the frequency of the grid
will be influenced by disturbances. Due to the error in the estimation of the grid, the VSC
might disconnect because the PLL does not manage to synchronize. As described in [1],
the future system will be even “weaker” due to the substitution of coal power plants to
renewable energy sources.
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2.3 Park Transformation

Lf
d

dt

[
iv,d
iv,q

]
=

[
ed
eq

]
+

[
−Rf Lfωpll
−Lfωpll −Rf

] [
iv,d
iv,q

]
−
[
vf,d
vf,q

]
(2.10)

Cf
d

dt

[
vf,d
vf,q

]
=

[
0 Cfωpll

−Cfωpll 0

] [
vf,d
vf,q

]
+

[
iv,d
iv,q

]
−
[
ig,d
ig,q

]
(2.11)

Lg
d

dt

[
ig,d
ig,q

]
=

[
−Rg Lgωpll
−Lgωpll −Rg

] [
ig,d
ig,q

]
+

[
vf,d
vf,q

]
−
[
Vg,d
Vg,q

]
(2.12)

2.3.2 Alternative Models
As already stated, the system is modeled with two different angular frequencies in this
work. As described in Chapter 2.3, this approach requires two Park matrices to describe
the system. Hence, the main difference between the different PLLs designed is mainly
what Park transformation different states are related to. This selection is sketched in Fig-
ure 2.5 for the different PLLs.

In order to separate the different PLLs designed in this work, the PLLs have been
named alternative 0, alternative 1 and alternative 2. Initially, the scope of this work is to
design one improved PLL, but different alternative formulations have been discovered in
the process.

+

- iV

eabc Lf1 Rf1

igC

Vgrid

g1−6

Vf

ic

Lg Rg

ωg

ωPLL

Figure 2.5: Illustration of what angular frequency the different PLLs are related to. Red box =
Alternative 0, Green box = Alternative 1 and Blue box = Alternative 2

Figure 2.5 illustrates how the different alternative PLLs referring to the two frequen-
cies. The list below briefly indicates what separates the different PLLs.

• Alternative 0: The only states that are related to ωpll are iv,d and iv,q , illustrated with
the red box in Figure 2.5. The rest of the states are related to Park transform at ωg.

• Alternative 1: In addition to iv,d and iv,d, vf,d and vf,q are also referred to ωPLL,
as illustrated with the green box in Figure 2.5. The rest of the states are related to
Park transform at ωg.
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Chapter 2. Modeling of 2L-VSC for synchronization

• Alternative 2: All the states are related to ωpll, including ig,d and ig,q . Naturally,
the voltage of the grid is still referred to the frequency of the grid. Illustrated with a
blue box in Figure 2.5.

As introduced in Chapter 2.3, a trigonometric nonlinearity term appears when the
system is treated with two different frequencies resulting in different descriptions of the
system depending on what PLL has been associated to each variable. In the following
sections, the differential equations describing the different systems are given.

Because the two frequencies are time-varying and not equal, one additional state is
needed to describe the new systems. The new state equation is expressed in Eq.(2.13).

δ̇ = θpll − ωgt (2.13)

where the derivative of θpll is ωpll, which is the angular frequency determined by the PLL.
The angular frequency of the PLL varies in order to synchronize with the grid. Moreover,
key to the results of this master thesis is to view ωpll as a control variable. This results in
a system with three control parameters when also taking into account the output voltage
of the converter ed and eq . For the alternative models, the individual characteristics are
marked with the same color codes illustrated in Figure 2.5.

2.3.3 Alternative 0
From Figure 2.5 it can be seen that the only states refereed to ωpll in alternative 0 are iv,d
and iv,q . This representation was briefly discussed in the specialization project [1]. Hence
with only iv,d and iv,q referred to ωpll, the system can be described by Eq. (2.14) - Eq.
(2.16).

Lf
d

dt

[
iv,d
iv,q

]
=

[
ed
eq

]
+

[
−Rf Lfωpll
−Lfωpll −Rf

] [
iv,d
iv,q

]
+

[
− cos(δ) − sin(δ)
sin(δ) − cos(δ)

] [
vf,d
vf,q

]
(2.14)

Cf
d

dt

[
vf,d
vf,q

]
=

[
0 Cfωg

−Cfωg 0

] [
vf,d
vf,q

]
+

[
cos(δ) − sin(δ)
sin(δ) cos(δ)

] [
iv,d
iv,q

]
−
[
ig,d
ig,q

]
(2.15)

Lg
d

dt

[
ig,d
ig,q

]
=

[
vf,d
vf,q

]
+

[
−Rg Lgωg
−Lgωg −Rg

] [
ig,d
ig,q

]
−
[
Vg,d
Vg,q

]
(2.16)

d

dt
δ = ωpll − ωg (2.17)

2.3.4 Alternative 1
For this alternative, iv,d, iv,q , vf,d and vf,q are referred to ωpll. As a result, the system can
be described by Eq. (2.18) - Eq. (2.20). An interesting observation with these equations
compared to alternative 0, is that the trigonometric identity matrices have moved from
nearby the VSC closer to the grid. Because vf,d and vf,q are referred to ωpll, ωpll does also
appear in the voltage dynamics for the system.
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Lf
d

dt

[
iv,d
iv,q

]
=

[
ed
eq

]
+

[
−Rf Lfωpll
−Lfωpll −Rf

] [
iv,d
iv,q

]
−
[
vf,d
vf,q

]
(2.18)

Cf
d

dt

[
V 0
d

V 0
q

]
=

[
0 Cfωpll

−Cfωpll 0

] [
vf,d
vf,q

]
+

[
iv,d
iv,q

]
−
[
cos(δ) − sin(δ)
sin(δ) cos(δ)

] [
ig,d
ig,q

]
(2.19)

Lg
d

dt

[
ig,d
ig,q

]
=

[
−Rg Lgωg
−Lgωg −Rg

] [
ig,d
ig,q

]
+

[
cos(δ) sin(δ)
− sin(δ) cos(δ)

] [
vf,d
vf,q

]
−
[
Vg,d
Vg,q

]
(2.20)

d

dt
δ = ωpll − ωg (2.21)

2.3.5 Alternative 2
In this representation, all the states are referred to ωpll. Leaving the grid voltage the only
term including the trigonometric matrix. The differential equations describing the alter-
native 2 model are illustrated in Eq. (2.22 - Eq. (2.25). Together with the alternative 1
model, vf,d and vf,q are also here referred to ωpll. Hence, ωpll does also appear in the
voltage dynamics for this system. Because all the six states of the system are related to
ωpll, the only state where ωg appears is in the 7th state of the system.

Lf
d

dt

[
iv,d
iv,q

]
=

[
ed
eq

]
+

[
−Rf Lfωpll
−Lfωpll −Rf

] [
iv,d
iv,q

]
−
[
vf,d
vf,q

]
(2.22)

Cf
d

dt

[
vf,d
vf,q

]
=

[
0 Cfωpll

−Cfωpll 0

] [
vf,d
vf,q

]
+

[
iv,d
iv,q

]
−
[
ig,d
ig,q

]
(2.23)

Lg
d

dt

[
ig,d
ig,q

]
=

[
−Rg Lgωpll
−Lgωpll −Rg

] [
ig,d
ig,q

]
+

[
vf,d
vf,q

]
−
[

cos(δ) sin(δ)
− sin(δ) cos(δ)

] [
Vg,d
Vg,q

]
(2.24)

d

dt
δ = ωpll − ωg (2.25)

2.3.6 On the estimation of a measurable δ

The arctanget estimation of δ is replaced by an exact value of δ, in order to fully focus on
the nonlinear challenge. The PLL illustrated in Chapter 2.2, approximate the q-component
of the grid to equal zero. Which as discussed earlier, are correct for a weak grid. As shown
in Eq. (2.8), trigonometric occurs when using two different Park transformations. This
trigonometric term does occur when the grid is referred to another frequency compared to
the measured voltages, Vf,d and vf,q.

The relationship between the measurable grid voltage and the actual grid voltage are
described by Eq. 2.26.

V md,q =

[
cos(δ) − sin(δ)
sin(δ) cos(δ)

] [
Vd
Vq

]
(2.26)

Where
δ = θpll − ωgt (2.27)
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Chapter 2. Modeling of 2L-VSC for synchronization

Where θpll is the integrate of ωpll. Hence the derivative of δ is:

δ̇ = ωpll − ωg (2.28)

By assuming Vq = 0, the following relationship can be found by help of trigonometrics
applied on Eq. (2.26):

V md = cos(δ)Vd

V mq = sin(δ)Vd

δ = arctan

(
V mq
V md

)
This results in the fact that δ can be treated as a measurable parameter, for a stiff grid.
Selecting Vq as 0 is necessary to obtain the relationship above, and is equivalent to set the
reference phase angle to 0 to Vabc, and gives the correct measure of δ. In addition, this PLL
is one of the most widely used and therefore is considered the reference for comparison
with the alternative PLL proposed in this work.
For a weak grid, on the other hand, δ is not measurable as Vq cannot be set to zero since
it is now a state variable. Yielding an additional term in the description of θ, which is not
measurable. For a weak grid, Eq. (2.29) describes δ.

δ = arctan

(
vmf,q
vmf,d

)
− arctan

(
vf,q
vf,d

)
(2.29)

Where vf,q and vf,d are the actual voltage, which is not measurable.

This implies that δ can be expressed with both Eq. (2.27) and Eq. (2.29). An essential
difference between these two representations is that Eq. (2.27) is varying with time.

In order to first focus on the challenges related to the nonlinearities, most of the sim-
ulations are initially conducted under the considerable approximation of having the exact
knowledge of δ. Thus, instead of estimating δ with the inverse tangential relationship of
vmf,q and vmf,d, the real δ is found by use of Eq. (2.27) and Eq. (2.28).
Figure 2.6 illustrates how the exact δ is provided in this work.

+
+ −1 PI(s)

y2

ωpll

+
−

ωg

1

s

δPLL

+
−

θPLL

δ0

ωg

Clock

Figure 2.6: Illustration of how the exact δ is provided.

In order to get ωg time varying, a clock is included in the PLL.
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Chapter 3
Energy Shaping for
Synchronization

This chapter will focus on the design of the different PLLs. Three alternative PLLs have
been designed by means of Lyaponov and passivity theories - in order to take into account
the remaining system nonlinearity. The design is heavily based on the control results from
[11], which is successful in stabilizing power electronic dynamics with bilinear product
nonlinearities. Because the angular frequency from the PLL, ωpll, is treated as a control
variable in this work, the equations used in [11] are extended.

3.1 Preliminaries in Nonlinear Control

Physical systems inherent nonlinearities that can produce undesirable effects in the op-
eration. As a result of this, control methods and analysis techniques to compensate for
and/or take into account the nonlinear effect have been developed. Unlike linear systems,
nonlinear systems cannot be analysed in the frequency domain [15]. Hence, theoretical
knowledge on nonlinear stability theory is vital in the design of a robust controller in a
nonlinear system.

Lyapunov direct and indirect stability methods are used in the design and analysis of a
dynamical system. The direct method is related to general energy concepts such that the
motion of a system is stable if the system’s energy decreases at all times and is able to take
into account the system nonlinearity.

3.1.1 Lyapunov Stability

Even though Lyapunov lived for more than a hundred years ago, the mathematician and
engineer described how well a system operated around a desired equilibrium point. The
Lyapunov theory says that an equilibrium point is stable if all solutions starting at nearby
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Chapter 3. Energy Shaping for Synchronization

points stay at nearby points, otherwise, it is unstable. The system can be said to be asymp-
totically stable if not only the solution stays close by the equilibrium point, but within as
time tends towards infinity, the solution tends towards the equilibrium point [16].
In [16], the definition of the equilibrium point x = 0 of a system is

• stable if, for each ε > 0, there is δ = δ(ε) > 0 such that

‖x(0)‖ < δ ⇒ ‖x(t))‖ < ε, ∀t ≥ 0

• unstable if it is not stable.

• asymptotically stable if it is stable and δ can be chosen such that

‖x(0))‖ < δ ⇒ lim
t→∞

x(t) = 0

Where the ε−δ requirement for stability takes a challenge-answer form. For any value
of ε that the challenger may care to designate, the system must produce a value of δ (pos-
sible dependent on ε), such that a trajectory starting in a δ close to the origin will never
leave the ε area.

Lyapunov’s stability theorem

let x = 0 be the equilibrium point for the system, and D ⊂ Rn be an domain containing
x = 0. Let V : D → R be a continuously differentiable function such that:

V (0) = 0 and V (x) > 0 in D − {0}

V̇ (x) ≤ 0 in D

Then, x=0 is stable. Moreover, if

V̇ (x) < 0 in D − {0}

then x = 0 is asymptotically stable.

In other words; The system is asymptotically stable if the derivative of the function
decreases, except for the value of the equilibrium point. Because in the equilibrium point,
the derivative of the function equals zero.

3.1.2 Passivity
Passivity can be viewed as an extension of Lyapunov’s theory to systems in open-loop,
heavily relying on energy conservation and transformation principles [16] and useful start-
ing point for designing controllers of physical (passive) systems. In [17] the theory is
applied to switching power converters. The article proves and illustrates how switching
power converters can be stabilized by simple PI controllers applied to the so-called pas-
sive output. The result in [17] is equilibrium-independent. Therefore, it is possible to
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3.1 Preliminaries in Nonlinear Control

globally asymptotically stabilize the system to any desired equilibrium. This is achieved
by using the incremental model of the system associated to the incremental state variables

x̃ = x− x?

where x? are the known equilibrium points and x are the respective states.

Passivity theorem [16]

Consider a general state space system
∑

which can be described as

ẋ = f(x, u), x(0)− x0εRn,

y = h(x, u),

Where xεRn is the state vector, input u εRm and the output y = εRm

The system
∑

is passive if it is dissipative with supply rate w(u, y) = uT y.
It is input strictly passive if it is dissipative with supply rate w(u, y) = uT −δi ‖u‖2 where
δi > 0.

The
∑

is dissipative with respect to the supply w(u, y) : Rm ×Rm → Rn if and only
if there exists a storage function H : Rn → R≥0 such that

H(x(T )) ≤ H(x(0)) +

∫ T

0

w(u(t)), y(t)) dt

for all, all T ≥ 0 and all x0εRn

3.1.3 Port- Hamiltonian

In order to analyse the system and design a passivity-based controller, a representation of
the system using the port-Hamiltonian formalism becomes convenient. For most nonlinear
systems

ẋ = f(x, u)

or even
ẋ = f(x) + g(x)u

can be too general. Hence, the f(x) from the equation above can be further divided in the
case of physical systems.

Numerous nonlinear physical systems can be represented by the port-Hamiltonian for-
malism illustrated in Eq.3.1.

ẋ = [J (x)−R(x)]∇H(x) + g(x)u (3.1)
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where x is a vector containing the state, J (x) is the interconnection matrix and R(x) is
the dissipation matrix. H(x) is the stored energy of the system or the Hamiltonian and can
be often expressed by:

H(x) =
1

2
xᵀQx

where Q is a symmetric matrix. The diagonal includes 1 divided by the storage units of
each differential equation.

Q = Qᵀ > 0

The interconnection matrix is a skew-symmetric matrix, hence J (x) = −J ᵀ(x). The
dissipation matrix, R(x) also has some characteristics worth noticing. The dissipated
energy of the system can never be negative, which means thatR(x) ≥ 0.

The stored energy of the system derived with respect to time can be expressed as:

Ḣ = ∇ᵀH(x) · ẋ (3.2)

with∇ =
∂

∂x
.

Combining Eq. (3.1) and Eq. (3.2) gives Eq. (3.3).

Ḣ =

Power Conservation︷ ︸︸ ︷
∇ᵀH(x)J (x)∇H(x)−

Power Dissipation︷ ︸︸ ︷
∇ᵀH(x)R(x)∇H(x) +

Passive Output yᵀ︷ ︸︸ ︷
∇ᵀH(x)g(x) ·u (3.3)

Due to the characteristics of the dissipation matrix, and the interconnection matrix the
power conservation in Eq. (3.3) will be zero and the power dissipated will be higher or
equal zero. This yields the following relationship:

Ḣ ≤ yᵀu (3.4)

Where yᵀ is the passive output term of Eq. (3.3). Hence, Eq. (3.4) can be characterized as
a passive system. Thus, the system represented by the port-Hamiltonian dynamics (3.1) is
passive.

3.1.4 Port-Hamiltonian for switching circuits
In [18] the port-Hamiltonian representation is applied to generalized switching circuits,
such as buck and boost converters.

In [11] the formalism is applied to a VSC. The port-Hamiltonian form of general power
electronic converter from the article is given as

ẋ = (J0 +

m∑
i=1

Jiui −R)∇H(x) + (Go +

m∑
i=1

Giui)E, (3.5)

with x =∈ Rn the converter state. The interconnection matrix has been separated in two
parts. One part consisting the terms directly affected by the control parameters, u ∈ Rm
and conversely, one part not dependent by the control. E ∈ Ro is a vector representing the
external sources that are included for describing the system. The input matrix G ∈ Rn×o
is divided into one a part unaffected by the control input and one which is affected.
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3.2 The design of the PLLs

3.2 The design of the PLLs
In order to avoid repetition, a general methodology concerning the design procedure is
presented in this section. The methodology is applicable on all the case models represented
in Chapter 2. The passive outputs–instrumental for the control design– are presented in
Chapter 3.2.3.

The port-Hamiltonian representation and the calculation of the passive outputs consist
of a high number of matrices. For the sake of compactness and readability, the least
important matrices have been moved to the Appendix B, where, each PLL has its own
section. Color codes have been used as an attempt to help separating the different PLLs.
The original model has no color, while red is used for alternative 0, green for alternative 1
and finally blue for the alternative 2 model.

Briefly, the design of the PLLs is divided into four steps:

1. Represent the system under the Port-Hamiltonian formalism

2. Express the system using incremental variables [11]

3. Calculate ỹ = Gᵀ
N (x)Qx̃, with GN (x) = [JiQx, . . . ,JmQx] and simplify

4. Apply a PI to the passive output

Step two and three are merged into one step, by help of [11]. In order to better understand
the effects of the theory, it is decided to apply the methodology on the equations derived
from the traditional modeling (ch. 2.3.1) as well, even if the synchronization dynamics are
not considered, as it assumes that ωpll and ωg are equal.

In Chapter 2, the different systems are expressed in SRF.

• Traditional→ Eq. (2.10) - Eq. (2.12)

• Alternative 0→ Eq. (2.14) - Eq. (2.17)

• Alternative 1→ Eq. (2.18) - Eq. (2.21)

• Alternative 2→ Eq. (2.22) - Eq. (2.25)

These equations are the base for the port-Hamiltonian representation of each of the models
of interest.

3.2.1 Port-Hamiltonian
Unfortunately, the synchronization model of the 2L-VSC of interest cannot be directly
described by means of the port-Hamiltonian form (3.5) introduced in [11], in its shape.
This is due to the following two facts:

1. The trigonometric nonlinearity Eq. (2.8) introduces a state-dependent additional
partition of the interconnection matrix; i.e., J (δ). As seen in Eq. (3.5), the inter-
connection matrices J0, and Ji are not state-dependent. Thus, the PI stabilization
result from [11] cannot be directly applied. It is therefore decided to approximate
Eq. (2.8) to the identity matrix such that J (δ) has no terms including δ. The same
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Chapter 3. Energy Shaping for Synchronization

implies for the G0 matrix for the alternative 2 model, because the trionometric non-
linearity occurs describing the grid.

2. Treating ωpll as a control parameter instead of an input also results in a 7th differen-
tial equation that is related to the difference between ωpll and ωg—see for example
(2.25). More importantly, in this equation the control variable ωpll enters linearly,
unlike u in (3.5).

Hence, the port-Hamiltonian form presented and validated in [11] needs to be extended
and validated to include the second point before any PLL alternatives can be designed. The
port-Hamiltonian model needed to represent the system of this work is now

ẋ = (J0 +

m∑
i=1

Jiui −R)∇H(x) + (Go +

m∑
i=1

Giui)E +Gωu, (3.6)

where the product between Gω ∈ Rn×m and u is indeed the linear entry of the control
variable ωpll in the 7th differential equation. The validation of stability proof concerning
this extension is given in Appendix A.

In order to represent the system with the port-Hamiltonian formalism, the first step
is to locate the states of the system in addition to the (open-loop) control variables. For
the traditional system, 6 differential equations are used to describe the system, while 7
differential equations are used for the alternative systems capturing the synchronization
dynamics. Equation (3.7) represents all the states for the alternative models, whereas δ is
the additional state distinguishing the traditional case from the alternatives.

x =
[
iv,d iv,q vf,d vf,q ig,d ig,q δ

]>
(3.7)

Furthermore, the control variables are identified. For the traditional model, ed and eq
are the only control variables. For the alternative models, ωpll is additionally treated as a
control parameter. Eq. (3.8) describes the different control parameters for the alternative
models.

u =
[
ωpll md mq

]>
(3.8)

The control variables ed and eq are the output voltages of the VSC in the SRF. In this
work ed and eq are controlled indirectly by the modulation indices md and mq , respec-
tively, through the linear relationship

ed = VDC ·md,

eq = VDC ·mq,

with VDC the constant dc voltage source of the VSC.

Moreover, the external source vector E affecting the system is identified. For all the
cases, the external sources remain the same. The external sources are considered as con-
stant disturbances, and therefore not possible to influence. The external source vector
affecting the models is given in Eq. (3.9), with VDC the constant DC-voltage source, Vg,d
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3.2 The design of the PLLs

and Vg,q are the grid voltage in SRF and ωg is the (a priori unknown) angular frequency of
the grid.

E =
[
VDC Vg,d Vg,q ωg

]>
(3.9)

The remaining part is to identify the different matrices. The different port-Hamiltonian
matrices are shown in:

• Traditional→ Appendix B.1.1

• Alternative 0→ Appendix B.2.1

• Alternative 1→ Appendix B.3.1

• Alternative 2→ Appendix B.4.1

3.2.2 Passivity on Incremental Model
Following the result in [11], the passive output of the system is defined as:

ỹ = G>N (x)Qx̃

Were Qx̃ is the multiplication of the Q-matrix, which is a n×n matrix that in the diagonal
includes 1 divided by the storage units of each differential equation. In addition, x̃ is a
vector including the incremental state variables and GN equals:

GN (x) := [J1Qx+G1E|...|JmQx+GmE]

The required matrices for calculating the passive output are given in:

• Traditional→ Appendix B.1.2

• Alternative 0→ Appendix B.2.2

• Alternative 1→ Appendix B.3.2

• Alternative 2→ Appendix B.4.2

3.2.3 Passive output for the different models
Traditional

An interesting result of the passive output of the traditional model is the fact that one
recovers the standard current controller error, where i∗v,d and i∗v,q are the current references.
It is worth mentioning however that the current controller in the specialization project [1]
includes a feed-forward term and decoupling terms. In order to make the equations as
similar to the simulations possible, the cross-coupling and feed-forward terms have been
removed. The passive output of the traditional model is described by Eq. (3.10).

ỹ =

[
VDC(iv,d − i∗v,d)
VDC(iv,q − i∗v,q)

]
(3.10)
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Alternative 0

For this model, the passive output is of the form (3.11). It can be seen that an additional
row is included in the passive output vector,which is related to the output of the control
variable ωpll. Moreover, the red term is a result bilinear product nonlinearity, while the
other term is related to the fact that ωpll and ωg are treated as unequal values.

The currents iv,d and iv,q are the only states related to ωpll in this model.

ỹ =

Lf (iv,di
∗
v,q − iv,qi∗v,d) + τ(δ − δ∗)
VDC(iv,d − i∗v,d)
VDC(iv,q − i∗v,q)

 (3.11)

Alternative 1

The passive output related to the alternative 1 model is illustrated in Eq. (3.12). Compared
to the alternative 0 passive output, the alternative 1 model has one additional term in the
first row of the vector. This is because in addition to iv,d and iv,q being multiplied by ωpll
in the state-space model, the two states vf,d and vf,q are also being multiplied by ωpll.

ỹ =

Lf (iv,di
∗
v,q − iv,qi∗v,d) + Cf (vf,dv

∗
f,q − vf,qv∗f,d) + τ(δ − δ∗)

VDC(iv,d − i∗v,d)
VDC(iv,q − i∗v,q)

 (3.12)

Alternative 2

The passive output related to the alternative 2 model is shown in Eq. (3.13). Finally, in
the alternative 2 model, all the states are related to the output of ωpll. Thus, ig,d and ig,q
additionally are related to ωpll compared to the alternative 1 model.

ỹ =

Lf (iv,di
∗
v,q − iv,qi∗v,d) + Cf (vf,dv

∗
f,q − vf,qv∗f,d) + Lg(ig,di

∗
g,q − ig,qi∗g,d) + τ(δ − δ∗)

VDC(iv,d − i∗v,d)
VDC(iv,q − i∗v,q)

 (3.13)

3.2.4 PI stabilization

As prooved in [17], the passive outputs can be used to stabilize the power electronics-based
system by means of simple PI controllers. This yields three additional states, related to the
integral part of the controller, where two of the states are related to the PI controller of
the current control, while the third state is related to the PI controller of the PLL. The PI
controllers in the current controller stay the same for all the cases, while the input to the
PI controller defining the output of ωpll changes for each case, as each case has a different
first row of the passive output vector. In this work, the three different states are called A,B
and C. Whereas A is the state related to the d- component in the current controller, B is
related to the PLL and C is related to the q-component in the current controller. The new
states can be described by the PI Eq. (3.14).
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3.3 Discussion

ż = −ỹ
u = −Kpỹ +Kiz

(3.14)

Where ỹ is the passivity vector, u is the control vector andKp andKi are the PI parameters
depending on the controller. The values of Kp and Ki are provided in Table 2.1. Ideally,
the different PLLs should have different PI parameters due to properly take into account
their differences. However, this has not been prioritized in this work.

3.3 Discussion
One challenge related to the new terms is the dependency on the calculated steady state
values. The more terms related to ωPLL, the more steady state values have to be calculated
and fed into the PLL. The alternative PLLs also input the measured values of the different
states in the SRF. The amount of state values needed is also depending on how much of the
system is referred to the SRF rotating at ωpll. One weakness of the steady state values used
in the control is that their precise calculation requires knowledge of all the system param-
eters, such as the external source vector. This includes the grid voltage and grid frequency
as well as the DC-voltage. In reality, these values are not known at each instant. How
much knowing these values affects the steady state calculations has not been quantified in
this work.
Additionally, the calculation of the steady state values as well as the measurement of the
grid current have to be done without invalidating the Lyapunov stability proof. Tools such
as a micro PMU can be used to measure the grid current, but challenges related to the
sampling time and the resolution might occur [19] [20].

The total stored energy of the system analysed in this work can be described by Eq.
(3.15.

V(x) =
1

2
x̃>Qx̃ (3.15)

where x̃ = x − x∗ and the Q-matrix is an n × n matrix that in the diagonal includes 1
divided by the storage units of each differential equation. The storage units in this system
is the inductors and capacitors. The stored energy of the system will decrease over time
due to the energy storage characteristics of the components. Hence, the derivative of the
system is expressed by

V̇ ≤ ỹ>ũ (3.16)

where ỹ> is the passivity output and ũ is the control input. Chapter 3.1.1 and 3.1.2 presents
the definition of a Lyapunov function and an asymptotic stable system. Eq. (3.15) and Eq.
(3.16) satisfies the restriction for a Lyapunov function and an asymptotic stable system.
Hence, the passive outputs designed in this work come with a stability certificate I.e the
Lyapunov function. Therefore, can the PLLs be categorised as large signal stable.
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Chapter 4
Performance Analysis

In this chapter, a standard PLL–referred to in this document as the traditional PLL–
illustrated in Figure 2.4 is compared to the alternative PLLs with respect to the overall
performance and stability. The parameter values are given in Table 2.1. Despite of not be-
ing optimally tuned, the performance and the stability characteristics of the different PLLs
are compared nonetheless. All the simulations have been conducted by help of MATLAB.
Except the model referred to as alternative 1, the mathematical equations used for the
control design are validated by means of a MATLAB function in MATLAB Simulink.

4.1 Continuous- Validation

For simplicity, most of the simulations have been conducted with a continuous voltage
source, instead of the generated voltage source from the PWM. This reduces the computa-
tional cost of the simulations in addition to remove any uncertainties regarding the PWM
signals. An advantage with this is the possibility to conduct continuous simulations rather
than discrete.
The validation of the continuous model and the model, including PWM signals, are exclu-
sively done for the original model. Because such validation has already been made in [21]
[22]. The continuous model is sufficient if the transient response of the two models equal.
The simulation event consist on a step change of iv,d from 10 A to 5 A, and all the six
states are compared. This includes the converter current, iv,d and iv,q , together with the
voltage across the capacitors, vf,d and vf,q, as well as the grid current, ig,d and ig,q all in
the synchronous reference frame.

4.1.1 Validation Results

Figure 4.1 illustrates the different states throughout the simulation. In order to distinguish
between the transient response of the simulations, a small transient window is included in
the subfigures.
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Figure 4.1a shows the converter current in the synchronous reference frame. Due to
the high ripple in the current, it is hard to distinguish if the transient responses match.
Nevertheless, both the continuous and the discontinuous d-component of the current follow
the reference. The q-component of the current is equal to zero for both cases.

As well as the converter current, the grid current by use of PWM oscillates more.
Despite this, the transient responses of the continuous and discontinuous models match.
This can be seen in Figure 4.1b.

Figure 4.1c illustrates the voltage across the capacitor in the synchronous reference
frame. From the figure, it can be seen that transient response correlates for both the cases.

The match between the simulations is considered as sufficient, hence the continuous
model is used whenever possible.
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Figure 4.1: Continuous and discrete comparison of the different states.

4.2 Performance
This section represents and compares the different PLLs, with respect to the performance.
Mainly, the responses of the states are illustrated and commented when the reference cur-
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4.2 Performance

rent in the current controller is changed from 10 A to 5 A.
For each of the different cases, the steady state values are calculated in MATLAB scripts.
The script used for the alternative 1 model is illustrated in Appendix G. A total of seven
differential equations are describing the system, and the total of unknowns in the system
is ten, implying that three parameters can be set as desired references in order to calculate
a steady state condition. In this work the values irefv,d = 10A, irefv,q = 0A and δref = 0 are
chosen. As presented in Chapter 3, the alternative PLLs are using the steady state values
as part of their control. Hence, the calculation of the parameters has to be sufficiently
accurate in order to fulfill the Lyapunov stability criteria.

As introduced in Chapter 1, vf,q cannot be estimated to 0 at each instant in a weak
grid.
As a first approach, all the PLLs of this work included the estimation that

δ = arctan

(
V mf,q
V mf,d

)
,

resulting in some challenges related to the validation of the models, and therefore the
estimation is not sufficient for the scope of the work. Due to lack of time, the real δ is used
instead, even if this measurement, in reality, is not available. The method of providing the
real δ is explained in Chapter 2.3.6.

Having the real value of δ establishes the possibility to focus on the contribution from
the non-linear terms. Nevertheless, simulations with the estimation of δ are conducted,
even though the models could not be validated. These simulation results are included in
Appendix C for being able to compare the results. All the simulation results, except the
alternative 1 case, includes the simulation results from the build in MATLAB function.

4.2.1 Built in MATLAB function
The MATLAB function was also used in the specialization project [1]. The advantage
with the MATLAB function is to simulate the equations with respect to time. Implying
that the systems under investigation can be simulated based soly on their mathematical
description. If the response of the mathematical simulation and the MATLAB Simulink
simulation matches, the equations are validated. If the equations are validated, the same
validation applies for the stability analysis. Due to the fact that the MATLAB function
excludes the switching of the VSC, the function shows the desired response of the system
without any switching dynamics.

4.2.2 Performance Results
Table 4.1 illustrated the steady state values calculated in different MATLAB scripts. From
the table, it can be seen that the steady state values for the original-, alternative 0- and
alternative 1- model equals. For some reason, the steady state for the alternative 2 model
are slightly different from the other models. It can also be seen that for the alternative 2
model, δ does not equal zero.

The different states are compared in order to compare the different PLLs. Figure 4.2
illustrates the converter current for the four different cases. Except the alternative 1 model,
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Table 4.1: Comparison of the calculated steady state values.

Original Alt 0 Alt 1 Alt 2 Unit
State
iv,d 10 10 10 10 [A]
iv,q 0 0 0 0 [A]
vf,d 327.6814 327.6814 327.6814 327.0977 [V]
vf,q 0.6348 0.6348 0.6348 -1.9286 [V]
ig,d 10.012 10.012 10.012 10 [A]
ig,q -6.1766 -6.1766 -6.1766 -0.0062 [A]
δ 0 0 0 -0.003 [-]
A 0.0072 0.0072 0.0072 0.0072 [-]
B 0.2186 0.2186 0.2186 0.2186 [-]
C 0.0003 0.0003 0.0003 0.0002 [-]

the simulations include the comparison with the MATLAB function simulation. The MAT-
LAB function simulation and the system simulation correlates for all the different cases.
In the transient response, the small differences between the function and the system can
be seen. The transient response for the different PLL seems to be somewhat the same. Be-
cause of the alternative 2 model are simulated including the PWM, the simulations include
more ripple.
Further, the third and fourth state in the system are compared with respect to performance.
vf,d and vf,q differs more compared to the converter current. The alternative 1 and alter-
native 2 models tend to be closer to the steady state values at each instant in the early stage
of the synchronization. This can, however, be related to the lack of optimal tuning for the
PI parameters. The transient response for the different PLLs are somewhat the same.
Figure 4.4 illustrates the grid current in SRF during the simulation. It can be seen that
the alternative 0 and alternative 2 correlates more to the function compared to the origi-
nal model. The figure also illustrates how the alternative 1 model almost equal the step
response, while the other models have a small transient response.

With respect to the performance, the alternative PLLs do not show significant improve-
ment with these simulations. Due to lack of time, simulations including an increasing grid
inductance were not conducted. An increasing grid inductance would perhaps reveal some
possible differences.

Challenges faced

Due to an algebraic loop, some of the simulations are conducted with the discontinuous
model including the PWM. The error message mainly occurred related to the park trans-
formations in the simulations. Nevertheless, the continuous model is used if possible.
Unfortunately, the MATLAB function and the alternative 1 model are not matching. Con-
sequently, this yields a certain uncertainly regarding all the results related to the alternative
1 model.
A third challenge faced is related to the simulations concerning the simulations with the
estimated δ. These simulations are shown in the appendix, and will not be the main focus
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Figure 4.2: iv,d and Iv,q comparison of the different models. δ known.

in this work. Nevertheless, these challenges are present as long as the PLLs designed in
this work are used.
The alternative 1 and alternative 2 PLLs manage to locate different steady state values for
vf,d and vf,q, hence also ig,d and ig,q in order to maintain the power flow. From an op-
erating point of view, the systems seem stable. However, if a gain of -1 is added in front
of the PI controller, the steady state values correlates with the calculated values. Adding a
gain of -1 on the alternative 1 PLL yields an improved result, while the alternative 2 model
faces some problems. The alternative model 2 system is now unstable at 10A, but when
the reference value of iv,d is changed to 5 A the system stabilizes.

4.3 Small Signal Stability

One way of comparing the different PLLs is by the use of small signal stability. In small
signal stability, the power system is analysed after a small disturbance is subjected to the
system. If the oscillations caused by the disturbance is suppressed such that the deviations
of the system state variables remain small for a long time, the system is stable. Hence, if
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Figure 4.3: vf,d and vf,q comparison of the different models. δ known.

the magnitude of the oscillations continues to increase or sustain indefinitely, the system
is unstable [23].
In order to conduct small signal stability, it is convenient to represent the system on state
space representation. For a linear system, the state space representation is:

ẋ = Ax+Bu

y = Cx+Du
(4.1)

where A, B, C and D are matrices, ẋ are the states, and u represents the inputs. For a
nonlinear system, however, the system state space representation is illustrated in Eq. (4.2).
The system simulated in this work is a nonlinear system, but for the small signal analysis
the system is linearized. When small changes are applied to the systems, the linearization
is a sufficient representation. A representation of a nonlinear system is more complex
compared to a linear. Generally, a nonlinear system can be described by Eq.(4.2).
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Figure 4.4: ig,d and ig,q comparison of the different models. δ known.

ẋ1 = f1(x1, ..., xn) + g1(x1, ..., xn)u

...
ẋn = fn(x1, ..., xn) + gn(x1, ..., xn)u

y = h(x)

(4.2)

Where ẋ1, ..., ẋn are the state variables, u represents the input and y is the output.
For the state space model deducted in this work, [24] are used as an inspirational

source. Unlike [24], this work does not include a power-controller, but despite this the
model in article correlates to the model in this work.

4.3.1 Method
In order to conduct a small signal stability analysis for all the models, a script for each of
the different systems is made. This yields in total four different MATLAB scripts. One for
the original PLL, and one for each of the alternative PLLs. The first step of the stability

31



Chapter 4. Performance Analysis

analysis is to calculate the steady state values including the references.
A script is made in order to determine the steady state values of the different systems.
The scripts include a function with the ten differential equations describing the respec-
tively systems in closed loop. Thus, the difference between the different scripts is the
contribution from the PLL and the results of applying different park-transformations. The
script related to the alternative 1 model is illustrated in Appendix G. As a result of the
passivity-based controller, the control parameters, ed, eq and ωpll, are substituted with the
passivity-based controller designed for each case. This means that PI stabilization is ap-
plied on the different terms as discussed in Chapter 3.2.3.

In order to get the steady state values, all the different equation describing the closed
loop system are included in a script. The steady state values calculated from this MATLAB
script have different attributes depending on the complexity of the PLLs. The basic PLL
does not include the steady state values in its control, while the passivity-based controllers
do. The dependency of the steady state values is increasing the more of the states that
are related to ωpll. Hence, the alternative 2 PLL is dependent on the steady state values
for the converter current, the voltage across the capacitor in addition to the grid current.
By contrast, the converter side currents in steady state are the only states alternative 0 is
depending on.
After the steady state values are calculated, the linear state space representation of the
model can be made. In order to linearize the system, the A, B, C and D matrices have
to be determined. The A and B matrix are calculated by help of a MATLAB code. The
equations for the A and B matrices are illustrated in Eq. (4.3) and Eq. (4.4). The C matrix
for this system is the identity matrix, while the D-matrix is not excising in this system [25].

A =


∂f1
∂x1

... ∂f1
∂xn

...
...

∂fn
∂x1

... ∂fn
∂xn


x=x∗

(4.3) B =


∂f1
∂y1

... ∂f1
∂yn

...
...

∂fn
∂y1

... ∂fn
∂yn


x=x∗

(4.4)

The A matrix is the partial derivative of the function with respect on the states, while the B
matrix is the partial derivative of the function with respect on the input parameters. Both
the matrices are evaluated at the equilibrium points.

By knowledge of the A matrix, the eigenvalues of the different systems can be cal-
culated. In this work, the eigenvalues were calculated by help of a build in MATLAB
code.

4.3.2 Eigenvalues

The dynamic behavior of a system is dependent on the system’s eigenvalues. A large class
of nonlinear systems can be described on the form illustrated in Eq. 4.2, and hence by a
linearization of the system described in Eq. (4.1). A linearization is sufficient for small
variable changes. If A is an n-by-n matrix, the n numbers λ that satisfy Eq. (4.5) are the
eigenvalues of A [26].

Ax = λx (4.5)
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4.3 Small Signal Stability

The eigenvalues can be computed by calculating the roots of Eq. (4.6).

det(sI− A) = 0 (4.6)

The numbers of eigenvalues are always the same as the dimensions of the A matrix.
The eigenvalues can also be complex, and therefore it is usefully to depict them into the
complex plane. The real part of the eigenvalue relates to the damping of the system, and in
addition, the signs can tell if the system is stable or unstable. An eigenvalue can be defined
as,

λ = σ + jω

where ω is the angle speed, and σ is the damping constant. In order for the system to be
stable, the damping constant, σ, have to be less than zero [27].
In this work a MATLAB code has been used to calculate the eigenvalues based on the
knowledge of the A-matrix. Each of the different models have their own script calculating
the eigenvalues and participation factors. The alternative 1 script is illustrated in Appendix
H.

4.3.3 Participation Factor

For each eigenvalue there exists a left and a right eigenvector. The right eigenvalue mea-
sures the activity of the state in the eigenvalue, while the left indicates how able the state
is to influence the eigenvalue [27].

By combining the right and left eigenvector, it is possible to measure the association
between the state variable and the modes. This combination is called the participation fac-
tor. Hence, knowing the participation factor, and therefore, knowing the states associated
with the critical eigenvalues, simplifies the tuning process.
In order to conduct simulations and get valid comparison results, the systems have to be
stable. Due to the different PLLs, individual analyses were made for each system.
The equations used for calculation of the participation are Eq.( 4.7) and Eq.( 4.8), respec-
tively. The methodology for the participation factor analysis is heavily based on [27] and
[28].

P =
[
P1 P2 · · · Pn

]
(4.7)

Pi =


P1i

P2i

...
Pni

 =


φ1iΨi1

φ2iΨi2

...
φniΨin

 (4.8)

P is a nxn matrix, describing the participation factor of each state for all the different
eigenvalues. P1, for example, is a nx1 vector, were the sum equals 1, and the different rows
in the vector describes the participation of each state. φ is the right eigenvector, while Ψ
is the left.
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4.4 On the small-signal stability results
Throughout the work the simulations conducted in MATLAB Simulink and the calcula-
tions have had small mismatches. Due to lack of time, the trouble causing the mismatch
has not been identified, which yields uncertainties with the work. Due to the fact that
the PLLs are working in the Simulink environment while the equations indicate that the
systems are unstable. It is decided to trust the Simulink simulations. Because this work
balancing between theory and practice, it is chosen to have a more practical approach on
the discussion of the results. Leaving the eigenvalue analysis and the participation factors
only as indicative results. The stability results where δ is known, are shown in Appendix
D. Additionally, the stability results where δ is estimated are shown in Appendix E
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Chapter 5
δ-independent synchronization

Throughout the work the challenges related to the angle difference state δ unavailability
have been present. A solution to the challenge might have been discovered in the late
work of the thesis. This chapter focuses on this solution and also function as a discussion
chapter.

5.1 Design
Due to the challenge regarding the δ term, the tuning parameter τ is increased and de-
creased in order to locate the effect of the term related to δ. During this analysis, it was
found that the term τ can be chosen arbitrarily small such that it still appears in the Lya-
punov function presented in chapter 3.3 is still valid. However, from a practical perspec-
tive, arbitrarily small τ removes the contribution of the term associated to the unavailable
angle δ. Recall that, as discussed in Chapter 2.2, τ decides the contribution of δ in the
input of the PI controller in the PLL.

First consider the traditional PLL shown in Figure 2.3. Indeed, removing the term
related to δ in the PLL results in a PLL excluding internal feedback.

By contrast, both the systems including the alternative 1 and alternative 2 PLL operates
well without the δ term included; i.e., with an arbitrarily small τ . The alternative 1 PLL
does not include the measurement and the steady state calculation of the grid current,
which is the argument that favors the alternative 1 PLL over the alternative 2 PLL. The cost
of the alternative 1 might be lower due to the fact that the PLL does not need information
about the grid current. The grid current can be measured by use of for example a micro
PMU, whereas challenges related to the sampling time and resolution might occur [19]
[20].

However, both the alternative 1 and alternative 2 PLL still require a somewhat correct
estimation of the steady state values, and therefore have some robustness issues.
On the other hand, the performance of the alternative 1 and alternative 2 model seem to
work with poorly estimation of the steady state currents. The alternative 2 model requires
the steady state values of ig,d and ig,q , but throughout the work it is discovered that the
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performance are almost unaffected by poorly calculated steady state values for the cur-
rents.

Both the systems operate poorly when v∗f,d and v∗f,q are poorly estimated. An ad-
vantage by removing the term related to δ is that the control does no longer depend on
δ∗, resulting in v∗f,q can be chosen to zero instead, and the two steady state voltages are
therefore known. Another advantage of having vf,q forced to zero is the easy power flow
control with the direct relationship of iv,d and active power, and iv,q and reactive power
described in Chapter 2.2.

5.2 Results
In order to best compare the new PLL to the previous PLLs, the same procedure regarding
the tests is done. This includes steady state calculations, performance simulations and
stability analysis.
A result of excluding the term related to δ, v∗f,q can be directly established to any desired
reference. The three control references of this new PLL are then i∗v,d, i∗v,q and v∗f,q. In Table
5.1 the steady state values are illustrated. The table shows that all the control parameters
equal the reference values. Unlike the steady state calculations in the previous chapter
(except alternative 2), δ does not equal 0 in steady state.

Table 5.1: Steady state calculations when δ is removed

State Value Unit
iv,d 10 [A]
iv,q 0 [A]
vf,d 327.6802 [V]
vf,q 0 [V]
ig,d 10.012 [A]
ig,q -6.1572 [A]
δ -0.0019 [-]
A 0.0072 [-]
B 0.2186 [-]
C 0.0003 [-]

In order to compare the result with the performance results from Chapter 4, the same
step has been made. After 1 second, irefv,d is changed from 10A to 5A. A zoomed window
of the transient response is included in each of the sub-figures.

Figure 5.1 illustrates the different states throughout the simulation. It can be seen that
the states are unaffected by removing the term related to δ. The system shows a sufficient
transient response when the change occurs. The PLL uses around 0.5 second to get vf,q
equal zero, which by improved tuning will most likely be lower. Nevertheless, due to lack
of time these simulations were not validated by neither equations nor the build in MAT-
LAB function.
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Figure 5.1: States in alt.1 model when δ is removed.

Even though the simulation results excluding the term related to δ nor the small signal
stability analysis could be validated, all the alternative models are mathematically vali-
dated. Which in theory ensures large signal stability because of the Lyapunov function.
This property is highly valuable, and also very attractive in the future energy systems. By
conducting more simulations, in addition to test the PLLs in the National Smart Grid Lab-
oratory, the PLLs can within a short period of time be applied in the industry.

Throughout this work the challenges related to the bilinear products nonlinearity and
angle difference state unavailability have been solved. The remaining challenge is related
to the trigonometric nonlinearity, and in [29] this challenge is investigated. The article
investigates the possibility to obtain a globally asymptotic stable system, with a restriction
region of the tuning parameters in the PI controller. Hence, the PLL will have a region
where all parameter values are stable. This naturally limit the PLL in some extent, but
how much this limit the performance is unknown.
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Chapter 6
Conclusion and Further Work

In the specialization project [1], three challenges related to the PLL were discovered, and
are summarized below for convenience.

• Trigonometric nonlinearity: This nonlinearity appears since two different Park trans-
formations at two different frequencies become necessary to describe the VSC syn-
chronization dynamics; one associated with the frequency of the grid ωg, while the
other one associated with the frequency estimated by the PLL, ωPLL.

• Bilinear products nonlinearity: This nonlinearity appears naturally when the es-
timated frequency ωPLL is considered as a control variable instead of a constant.
Thus, the cross-coupling terms in the VSC model will consist on a control variable
multiplying a state variable.

• Angle difference state unavailability: A third problem related to the synchroniza-
tion model of VSC is that the angle difference state variable δ , θPLL − ωgt cannot
be measured in the weak grid case, and therefore is unavailable for use in the con-
trol. This angle is indeed the difference between the two angles used in both Park
transformations.

Both the bilinear product nonlinearity and the angle difference state unavailability are
solved in this work. There are still restrictions related to these two problems. The only
control parameters, for example, are at this point iv,d, iv,q and δ. For the PLL presented in
Chapter 5 the control of δ is substituted with vf,q. Yielding some robustness issues.

6.1 Conclusion
In this master thesis the challenge related to the bilinear product nonlinearity in the syn-
chronization model of the VSC is prioritized. This includes designing PLLs that are able
to handle nonlinear systems, unlike the traditional PLLs currently in use today. The ap-
proach of solving the challenges related to the nonlinearities is based on Lyapunov theory
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as well as passivity. In [11] the design of PI-Passivity-based control is applied to power
electronics converter with bilinear product nonlinearities, although such a work did not
consider any synchronization dynamics. In this master thesis however, the angular fre-
quency provided by the PLL ωpll, is treated as a control variable and hence unequal to
the a priori unknown angular frequency of the grid ωg . This more accurate interpretation
creates an additional state describing the system. Hence, the equations used in [11] needed
to be extended and slightly modified to fit the case of interest in order to apply the PI-PBC
result and thus design the PLLs. Due to the fact that ωpll is treated as a control variable,
and different from ωg , two park transformations have to be used in order to transform the
system in two different synchronous reference frames. Three alternative PLLs have been
designed, and what mainly distinguishes them is which SRF each states are related to.
The three different PLLs designed have been compared to a traditional PLL used in the
industry today, with respect to performance and small-signal stability. Due to a mismatch
between the small-signal stability analysis and the performance analysis, the results relat-
ing the performance have been emphasized in this work.
Finally, the third challenge regarding the PLL has been attempted to solve. This gave
three different sets of results. One (unrealistic) result including simulations where δ is as-
sumed known, one set of simulations where δ is estimated with the arctangent relationship
between vf,q and vf,d and a third set of results where the term related to δ is chosen arbi-
trarily small such that the PLL can in principle be independent of δ without invalidating
the stability proof.

Due to lack of time, neither the performance nor small-signal stability analysis were
fully completed, hence it is too early to give a final recommendation regarding which of
the PLL is favoured for industrial applications. That being said, the different PLLs and
specially the PLL without the δ term shows promising results related to performance, as
this last one seems to solve two of the three challenges listed throughout the thesis. The
results show that despite of δ not being included in this last PLL, the system synchronizes
rapidly. Furthermore, even though the small-signal stability results are treated as tentative,
they indicate that the eigenvalues are neither significantly affected by the estimation of δ
nor by removing the term. This might indicate that the instabilities might occur due to
poorly tuned PI parameters related to the rest of the states.
Another interesting observation is regarding the operation with only the term related to
vf,q and vf,d connected to the PLL. Meaning that both terms related to the grid current
and the converter current can be poorly estimated, and the PLL will still synchronize.

The results from this master thesis indicate that an improved PLL can be designed
to take into account the non-linear behaviour of the system. In order to determine if the
PLLs designed in this work are indeed an improvement over traditional solutions, more
simulations have to be conducted. Although, the work of the thesis might not directly
result in an improved PLL, it paves the path to eventually be able to design them in the
near future.
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6.2 Further Work
Indeed, more simulations have to be conducted, including the more challenging case of a
more complex system, rather than the isolated system used in this work. In addition, focus
on weaker grids is recommended where the grid inductance is increased. Unfortunately,
time constraints and the COVID19 situation put a stop on all hope of testing the most
promising PLL in the National Smart Grid Laboratory. Albeit advantageous, the knowl-
edge of the external sources (necessary for a precise estimation of the equilibrium point)
should gradually decrease for realistic implementations. Hence, the effects of not having
complete knowledge of the grid can be considered in future designs.

Changing the reference values for the converter current can also yield some interesting
results. This is due to the fact that the same reference values have been used in this work,
and therefore the simulations are narrow in the extent of the varieties in the grid. This can
provide some interesting results regarding the performance contribution from the passivity
terms appearing in the PLL. With a higher variety of reference values, the importance of
the different passivity terms could be studied in more depth. Removing the term related
to δ might have more influence than what has been observed in this work; hence it is con-
venient to conduct more simulations where the term is both included and excluded. The
performance might also show significant improvement with the parameters of the PI con-
troller being optimally tuned.

As already stated, the PLL has three challenges that should be solved. Hopefully, the
path towards solving two of these challenges have been addressed in this thesis, while
the last problem was not considered here due to the complexity of handling trigonometric
nonlinearities.

That being said, [29] investigates the possibility to solve this remaining problem where
conditions for obtaining global asymptotic stability are found and imposed in the tuning
of the PI parameters.
In order to fully trust the nonlinear equations used in the control design, obtaining a time-
domain match between them and the simulations is of paramount importance.

Despite of the alternative 1 PLL being favored in this work, both the alternative 0 and
alternative 2 PLL should be included in the procedure of designing an improved PLL.
Because they may inherent characteristics that is favorable.
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Appendix A
Validation of Port Hamiltonian
representation used in this work

The port Hamiltonian representation in [11] needed to be extended and validated. In this
chapter the validation is shown.

ẋ = (J0 +

m∑
i=1

Jiui −R)∇H(x) + (Go +

m∑
i=1

Giui)E +Gωu

ẋ = (J0 −R)∇H(x) +

m∑
i=1

JiQxui +G0E +

m∑
i=1

JiGiEui +

m∑
i=1

JiGωui

ẋ = (J0 −R)∇H(x) +G0E + ([J1Qx+G1E, ..., JmQx+GmE] +Gω)︸ ︷︷ ︸
GN (x)

u

Get on incremental mode where:

x̃ = x− x∗

ũ = u− u∗ → u = ũ− u∗

ẋ =(J0 −R)∇H(x) + G0E︸︷︷︸
Constant

+GN (x)u

−0 = (J0 −R)∇H(x∗) + G0E︸︷︷︸
Constant

+GN (x∗)u

= ˙̃x = (J0 −R)Q(x− x∗)︸ ︷︷ ︸
∇V (x)

+GN (x)(ũ+ ũ∗)−GN(x∗)u∗
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˙̃x = (J0 −R)∇V (x) +GN (x)ũ+ [GN (x)−GN (x∗)]u∗

And now extract ([GN (x)−GN (x∗)])u∗, locate and remove the constants.

([(J1Qx+ G1E︸︷︷︸
Constant

, ..., JmQx + GmE︸ ︷︷ ︸
Constant

] + Gω︸︷︷︸
Constant

)−

([J1Qx
∗ + G1E︸︷︷︸

Constant

, ..., JmQx
∗ + GmE︸ ︷︷ ︸

Constant

] + Gω︸︷︷︸
Constant

)])u∗

Simplify the term:

[J1Q(x− x∗), ...,JmQ(x− x∗)]u∗

⇓
m∑
i=1

Jiu
∗
i∇V (x)

And now included in the original model:

˙̃x = (J0 +

m∑
i=1

−R)∇V (x) +GN (x)ũ

V (x) =
1

2
· x̃TQx̃

V̇ = ∇TV ˙̃x

V̇ = −∇TV (x)R∇V (x)︸ ︷︷ ︸
pseudodissipation

+∇TV (x)GN (x)︸ ︷︷ ︸
yT

ũ

V̇ ≤ yT ũ

Hence the extension is proved and the converter can be stabilized with a PI controller.
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Appendix B
Equations for Port Hamiltonian

B.1 Original

This appendix illustrates the different matrices used for designing the different PLLs.
Each section is divided into two subsections, where the first section concerns the port-
Hamiltonian representation and the second subsection shows the matrices used for the
passivity controller design.

B.1.1 Port-Hamiltonian

ẋ =
[
φv,d φv,q qf,d qf,q φg,d φg,q

]>
(B.1)

J0 =


0 Lfω −1 0 0 0

−Lfω 0 0 −1 0 0
1 0 0 Cω −1 0
0 1 Cω 0 0 −1
0 0 1 0 0 Lgω
0 0 0 1 −Lgω 0

 (B.2)

R =


Rf 0 0 0 0 0
0 Rf 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 Rg 0
0 0 0 0 0 Rg

 (B.3)
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G0 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 −1 0 0
0 0 −1 0

 (B.4)

G1 =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (B.5) G2 =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 (B.6)

E =
[
VDC Vg,d Vg,q ωg

]>
(B.7)

u =

[
md

mq

]
(B.8)

B.1.2 Passive Output

Q =



1
Lf

0 0 0 0 0

0 1
Lf

0 0 0 0

0 0 1
C 0 0 0

0 0 0 1
C 0 0

0 0 0 0 1
Lg

0

0 0 0 0 0 1
Lg


(B.9)

x̃ =



φv,d − φ∗v,d
φv,q − φ∗v,q
qf,d − q∗f,d
qf,q − q∗f,q
φg,d − φ∗g,d
φg,q − φ∗g,q



>

(B.10)

GN (x) =


VDC 0

0 VDC
0 0
0 0
0 0
0 0

 (B.11)

A hyperlink in 3.2 is included in order to return to Chapter 3.2.
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B.2 Alternative 0

B.2.1 Port-Hamiltonian

ẋ =
[
φv,d φv,q qf,d qf,q φg,d φg,q δ

]
(B.12)

J0 =



0 0 −1 0 0 0 0
0 0 0 −1 0 0 0
1 −0 0 Cωg −1 0 0
0 1 −Cωg 0 0 −1 0
0 0 1 0 0 Lgωg 0
0 0 0 1 −Lgωg 0 0
0 0 0 0 0 0 0


(B.13)

J1 =



0 Lf 0 0 0 0 0
−Lf 0 0 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


(B.14)

R =



Rf 0 0 0 0 0 0
0 Rf 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 Rg 0 0
0 0 0 0 0 Rg 0
0 0 0 0 0 0 0


(B.15)

G0 =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


(B.16)

G1 =



1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


(B.17) G2 =



0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


(B.18)
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E =


VDC
Vg,d
Vg,q
ωg

 (B.19)

u =

ωpll
md

mq

 (B.20)

Gω =



0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0


(B.21)

B.2.2 Passive output

Q =



1
Lf

0 0 0 0 0 0

0 1
Lf

0 0 0 0 0

0 0 1
C 0 0 0 0

0 0 0 1
C 0 0 0

0 0 0 0 1
Lg

0 0

0 0 0 0 0 1
Lg

0

0 0 0 0 0 0 1
τδ


(B.22)

x̃ =



φv,d − φ∗v,d
φv,q − φ∗v,q
qf,d − q∗f,d
qf,q − q∗f,q
φg,d − φ∗g,d
φg,q − φ∗g,q



>

(B.23)

GN (x) =



Lf iv,q VDC 0
−Lf iv,d 0 VDC

0 0 0
0 0 0
0 0 0
0 0 0
1 0 0


(B.24)

A hyperlink in 3.2 is included in order to return to Chapter 3.2.
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B.3 Alternative 1

B.3.1 Port-Hamiltonian

ẋ =
[
φv,d φv,q qv,d qv,q φg,d φg,q δ

]>
(B.25)

J0 =



0 0 −1 0 0 0 0
0 0 −1 0 0 0
1 0 0 0 −1 0 0
0 1 0 0 −0 −1 0
0 0 1 0 0 Lgωg 0
0 0 −0 1 −Lgωg 0 0
0 0 0 0 0 0 0


(B.26)

J1 =



0 Lf 0 0 0 0 0
−Lf 0 0 0 0 0 0

0 0 0 C 0 0 0
0 0 −C 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


(B.27)

R =



Rf 0 0 0 0 0 0
0 Rf 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 Rg 0 0
0 0 0 0 0 Rg 0
0 0 0 0 0 0 0


(B.28)

G0 =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1


(B.29)

G1 =



1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


(B.30) G2 =



0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


(B.31)
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E =


VDC
Vg,d
Vg,q
ωg

 (B.32)

u =

ωpll
md

mq

 (B.33)

Gω =



0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0


(B.34)

B.3.2 Passive Output

Q =



1
Lf

0 0 0 0 0 0

0 1
Lf

0 0 0 0 0

0 0 1
C 0 0 0 0

0 0 0 1
C 0 0 0

0 0 0 0 1
Lg

0 0

0 0 0 0 0 1
Lg

0

0 0 0 0 0 0 1
τδ


(B.35)

x̃ =



φv,d − φ∗v,d
φv,q − φ∗v,q
qf,d − q∗f,d
qf,q − q∗f,q
φg,d − φ∗g,d
φg,q − φ∗g,q



>

(B.36)

GN (x) =



Lf iv,q VDC 0
−Lf iv,d 0 VDC
Cvf,q 0 0
−Cvf,d 0 0

0 0 0
0 0 0
1 0 0


(B.37)

A hyperlink in 3.2 is included in order to return to Chapter 3.2.
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B.4 Alternative 2

B.4.1 Port-Hamiltonian

ẋ =
[
φv,d φv,q qv,d qv,q φg,d φg,q δ̇

]>
(B.38)

J0 =



0 0 −1 0 0 0 0
0 0 0 −1 0 0 0
1 0 0 0 −1 0 0
0 1 0 0 0 −1 0
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 0


(B.39)

J1 =



0 Lf 0 0 0 0 0
−Lf 0 0 0 0 0 0

0 0 0 C 0 0 0
0 0 −C 0 0 0 0
0 0 0 0 0 Lg 0
0 0 0 0 −Lg 0 0
0 0 0 0 0 0 0


(B.40)

R =



Rf 0 0 0 0 0 0
0 Rf 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 Rg 0 0
0 0 0 0 0 Rg 0
0 0 0 0 0 0 0


(B.41)

G0 =



0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 −1 −0 0
0 0 −1 0
0 0 0 −1


(B.42)

G1 =



1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


(B.43) G2 =



0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


(B.44)
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E =


VDC
Vg,d
Vg,q
ωg

 (B.45)

u =

ωpll
md

mq

 (B.46)

Gω =



0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0


(B.47)

B.4.2 Passive Output

Q =



1
Lf

0 0 0 0 0 0

0 1
Lf

0 0 0 0 0

0 0 1
C 0 0 0 0

0 0 0 1
C 0 0 0

0 0 0 0 1
Lg

0 0

0 0 0 0 0 1
Lg

0

0 0 0 0 0 0 1
τδ


(B.48)

x̃ =



φv,d − φ∗v,d
φv,q − φ∗v,q
qv,d − q∗v,d
qf,q − q∗f,q
φg,d − φ∗g,d
φg,q − φ∗g,q
δ − δ∗



>

(B.49)

GN (x) =



Lf iv,q VDC 0
−Lf iv,d 0 VDC
CVf,q 0 0
−CVf,d 0 0
Lgig,q 0 0
−Lgig,d 0 0

1 0 0


(B.50)

A hyperlink in 3.2 is included in order to return to Chapter 3.2.
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Appendix C
Performance Without Knowing δ

C.1 Original PLL

Table C.1: The calculated steady state values when δ is estimated. Original model

State Value Unit
iv,d 10 [A]
iv,q 0 [A]
vf,d 328.2028 [V]
vf,q 0 [V]
ig,d 7.0464 [A]
ig,q -13.2821 [A]
δ -0.7889 [-]
A 0.0051 [-]
B 0.2186 [-]
C 0.0054 [-]
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Figure C.1: Converter current in SRF when delta is estimated. Original model
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Figure C.2: Voltage across the capacitor in SRF when delta is estimated. Original model
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Figure C.3: Grid current in SRF when delta is estimated. Original model

C.2 Alternative 0

Table C.2: The calculated steady state values when δ is estimated. Alternative 0

State Value Unit
iv,d 10 [A]
iv,q 0 [A]
Vf,d 328.2028 [V]
vf,q 0 [V]
ig,d 7.0464 [A]
ig,q -13.2821 [A]
δ -0.7889 [-]
A 0.001 [-]
B -0.0437 [-]
C 0.0011 [-]
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Figure C.4: Converter current in SRF when delta is estimated. Alternative 0
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Figure C.5: Voltage across the capacitor in SRF when delta is estimated. Alternative 0
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Figure C.6: Grid current in SRF when delta is estimated. Alternative 0

C.3 Alternative 1

Table C.3: The calculated steady state values when δ is estimated. Alternative 1.

State Value Unit
iv,d 10 [A]
iv,q 0 [A]
vf,d 327.6802 [V]
vf,q 0 [V]
ig,d 10.012 [A]
ig,q -6.1572 [A]
δ -0.0019 [-]
A 0.0072 [-]
B 0.2186 [-]
C 0.0003 [-]
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Figure C.7: Converter current in SRF when delta is estimated. Alternative 1
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Figure C.8: Voltage across the capacitor in SRF when delta is estimated. Alternative 1
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Figure C.9: Grid current in SRF when delta is estimated. Alternative 1

C.4 Alternative 2

Table C.4: The calculated steady state values when δ is estimated. Alternative 2.

State Value Unit
iv,d 10 [A]
iv,q 0 [A]
vf,d 327.0992 [V]
vf,q -0.988 [V]
ig,d 10 [A]
ig,q -0.0062 [A]
δ -0.0001 [-]
A 0.0072 [-]
B 0.2186 [-]
C 0.0002 [-]
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Figure C.10: Converter current in SRF when delta is estimated. Alternative 2
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Figure C.11: Voltage across the capacitor in SRF when delta is estimated. Alternative 2
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Figure C.12: Grid current in SRF when delta is estimated. Alternative 2
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Appendix D
Eigenvalues and Participation factor
when δ is known
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D.1 Orginal

Table D.1: Eigenvalues related to the original PLL.

Eigenvalue Nr. Real Imaginary
1 -6.41E+07 314.16i
2 -6.41E+07 -314.16i
3 -83.367 7767.3i
4 -83.367 -7767.3i
5 -83.367 7138.9i
6 -83.367 -7138.9i
7 -130 0.00068689i
8 -130 - 0.00068689i
9 -171.63 0i

10 -8.3728 0i

Table D.2: The participation factors for the different eigenvalues related to the model including the
original PLL.

Eigenvalue Nr.
1 2 3 4 5 6 7 8 9 10

iv,d 0.5 0.5 0 0 0 0 0 0 0 0
iv,q 0.5 0.5 0 0 0 0 0 0 0 0
vf,d 0 0 0.25 0.25 0.25 0.25 0 0 0 0
vf,q 0 0 0.25 0.25 0.25 0.25 0 0 0 0
ig,d 0 0 0.25 0.25 0.25 0.25 0 0 0 0
ig,q 0 0 0.25 0.25 0.25 0.25 0 0 0 0
δ 0 0 0 0 0 0 0 0 0.9535 0.0465
A 0 0 0 0 0 0 0.5 0.5 0 0
B 0 0 0 0 0 0 0 0 0.0465 0.9535
C 0 0 0 0 0 0 0.5 0.5 0 0
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D.2 Alternative 0

Table D.3: Eigenvalues related to the alternative 0 model.

Eigenvalue Nr. Real Imaginary
1 -6.41E+07 + 52.589i
2 -6.41E+07 - 52.589i
3 -83.367 + 7767.3i
4 -83.367 - 7767.3i
5 -83.367 + 7138.9i
6 -83.367 - 7138.9i
7 -650.01 + 0i
8 -649.99 + 0i
9 -171.63 + 0i
10 -8.3728 + 0i

Table D.4: The participation factors for the different eigenvalues related to the alternative 0 model.

Eigenvalue Nr
1 2 3 4 5 6 7 8 9 10

iv,d 0.5 0.5 0 0 0 0 0 0 0 0
iv,q 0.5 0.5 0 0 0 0 0 0 0 0
vf,d 0 0 0.25 0.25 0.25 0.25 0 0 0 0
vf,q 0 0 0.25 0.25 0.25 0.25 0 0 0 0
ig,d 0 0 0.25 0.25 0.25 0.25 0 0 0 0
ig,q 0 0 0.25 0.25 0.25 0.25 0 0 0 0
δ 0 0 0 0 0 0 0 0 0.9535 0.0465
A 0 0 0 0 0 0 0.9991 0.0009 0 0
B 0 0 0 0 0 0 0 0 0.0465 0.9535
C 0 0 0 0 0 0 0.0009 0.9991 0 0
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D.3 Alternative 1

Table D.5: Eigenvalues related to the alternative 1 model.

Eigenvalue Nr. Real Imaginary
1 -6.41E+07 + 312.27i
2 -6.41E+07 - 312.27i
3 -175.25 + 7442.1i
4 -175.25 - 7442.1i
5 -1124.2 + 7571.6i
6 -1124.2 - 7571.6i
7 933.71 + 0i
8 -130 + 0.00039484i
9 -130 - 0.00039484i
10 -7.9192 + 0i

Table D.6: The participation factors for the different eigenvalues related to the alternative 1 model.

Eigenvalue Number
1 2 3 4 5 6 7 8 9 10

iv,d 0.5 0.5 0 0 0 0 0 0 0 0
iv,q 0.5 0.5 0 0 0 0 0 0 0 0
vf,d 0 0 0.4568 0.4568 0.0386 0.0386 0.0001 0 0 0
vf,q 0 0 0.0399 0.0399 0.4327 0.4327 0.0198 0 0 0
ig,d 0 0 0.4577 0.4577 0.0394 0.0394 0 0 0 0
ig,q 0 0 0.0393 0.0393 0.4257 0.4257 0.0439 0 0 0
δ 0 0 0.0062 0.0062 0.0634 0.0634 0.9285 0 0 0.008
A 0 0 0 0 0 0 0 0.5 0.5 0
B 0 0 0 0 0.0001 0.0001 0.0077 0 0 0.992
C 0 0 0 0 0 0 0 0.5 0.5 0
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D.4 Alternative 2

Table D.7: Eigenvalues related to the alternative 2 model.

Eigenvalue Nr. Real Imaginary
1 -6.41E+07 + 312.27i
2 -6.41E+07 - 312.27i
3 -82.392 + 7459.3i
4 -82.392 - 7459.3i
5 -8736.8 + 0i
6 6238.1 + 0i
7 996.93 + 0i
8 -130 + 0.00033762i
9 -130 - 0.00033762i

10 -7.9188 + 0i

Table D.8: The participation factors for the different eigenvalues related to the alternative 2 model.

Eigenvalue Number
1 2 3 4 5 6 7 8 9 10

iv,d 0.5 0.5 0 0 0 0 0 0 0 0
iv,q 0.5 0.5 0 0 0 0 0 0 0 0
vf,d 0 0 0.4998 0.4998 0.0001 0.0001 0.0001 0 0 0
vf,q 0 0 0.0001 0.0001 0.4989 0.4177 0.0136 0 0 0
ig,d 0 0 0.4998 0.4998 0.0001 0.0001 0.0001 0 0 0
ig,q 0 0 0.0001 0.0001 0.4438 0.4867 0.0405 0 0 0
δ 0 0 0.0001 0.0001 0.057 0.0951 0.9382 0 0 0.008
A 0 0 0 0 0 0 0 0.5 0.5 0
B 0 0 0 0 0.0001 0.0002 0.0075 0 0 0.992
C 0 0 0 0 0 0 0 0.5 0.5 0
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D.4.1 On the stability results
Even though these are only considered as indicative results, it can be seen from the results
that with respect to the eigenvalues, the traditional model as well as the model including
the alternative 0 PLL are stable. Which leaves the alternative 1 and alternative 2 model
unstable. Eigenvalue 7 in alternative 1 is unstable. Even though δ is a known parameter
in the calculations, the unstable eigenvalue has 92 % participation factor of δ. While the
remaining percentages are mainly related to ig,q and vf,q .
For the alternative 2 model, however, the eigenvalue 6 and 7 are unstable. Together with
the alternative 1 model, eigenvalue 7 are mainly related to δ (94 %), ig,q (4 %) and vf,q
(1,4 %). The same states do also have the highest participating factors of eigenvalue 6,
whereas ig,q (49 %), vf,q (42 %) and δ (9 %).

In Appendix E the eigenvalues and the participation factor for the systems including
the estimation of δ is shown. What slightly differ these models from the models when δ is
known, are the participation factors of the different states. Implying that the estimation of
δ is somewhat sufficient. Whereas most of the performance simulations substantiates.
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Appendix E
Eigenvalues and Participation
Factor when δ is estimated
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E.1 Original

Table E.1: The eigenvalues of the model including the original PLL when δ is estimated.

Eigenvalue Nr. Real Imaginary
1 -6.41E+07 + 313.81i
2 -6.41E+07 - 313.81i
3 -83.305 + 7770.2i
4 -83.305 - 7770.2i
5 -83.285 + 7142.1i
6 -83.285 - 7142.1i
7 -130 + 0.00065229i
8 -130 - 0.00065229i
9 -0.14469 + 1.4778i
10 -0.14469 - 1.4778i

Table E.2: The participation factors related to the eigenvalues in Table E.1.

Eigenvalue Number
1 2 3 4 5 6 7 8 9 10

iv,d 0.5 0.5 0 0 0 0 0 0 0 0
iv,q 0.5 0.5 0 0 0 0 0 0 0 0
vf,d 0 0 0.2476 0.2476 0.2524 0.2524 0 0 0 0
vf,q 0 0 0.2524 0.2524 0.2476 0.2476 0 0 0 0
ig,d 0 0 0.2476 0.2476 0.2524 0.2524 0 0 0 0
ig,q 0 0 0.2521 0.2521 0.2471 0.2471 0 0 0.0044 0.0044
δ 0 0 0.0004 0.0004 0.0004 0.0004 0 0 0.4976 0.4976
A 0 0 0 0 0 0 0.5 0.5 0 0
B 0 0 0 0 0 0 0 0 0.498 0.498
C 0 0 0 0 0 0 0.5 0.5 0 0
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E.2 Alternative 0

Table E.3: The eigenvalues of the alternative 0 model when δ is estimated.

Eigenvalue Nr. Real Imaginary
1 -6.41E+07 + 201.92i
2 -6.41E+07 - 201.92i
3 -85.405 + 7769.4i
4 -85.405 - 7769.4i
5 -81.044 + 7141.1i
6 -81.044 - 7141.1i
7 -650.01 + 0i
8 -650 + 0i
9 -0.28484 + 2.0961i
10 -0.28484 - 2.0961i

Table E.4: The participation factors related to the eigenvalues in Table E.3.

Eigenvalue Number
1 2 3 4 5 6 7 8 9 10

iv,d 0.5 0.5 0 0 0 0 0 0 0 0
iv,q 0.5 0.5 0 0 0 0 0 0 0 0
vf,d 0 0 0.2483 0.2483 0.2517 0.2517 0 0 0 0
vf,q 0 0 0.2517 0.2517 0.2482 0.2482 0 0 0 0
ig,d 0 0 0.2483 0.2483 0.2517 0.2517 0 0 0 0
ig,q 0 0 0.2514 0.2514 0.2479 0.2479 0 0 0.0022 0.0022
δ 0 0 0.0004 0.0004 0.0004 0.0004 0 0 0.4988 0.4988
A 0 0 0 0 0 0 0.8822 0.1178 0 0
B 0 0 0 0 0 0 0 0 0.499 0.499
C 0 0 0 0 0 0 0.1178 0.8822 0 0
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E.3 Alternative 1

Table E.5: The eigenvalues of the alternative 1 model when δ is estimated.

Eigenvalue Nr. Real Imaginary
1 -6.41E+07 + 311.92i
2 -6.41E+07 - 311.92i
3 -195.98 + 7436.6i
4 -195.98 - 7436.6i
5 -927.34 + 7572.7i
6 -927.34 - 7572.7i
7 941.45 + 0i
8 -130 + 0.00040292i
9 -130 - 0.00040292i

10 -7.9192 + 0i

Table E.6: The participation factors related to the eigenvalues in Table E.5

Eigenvalue Number
1 2 3 4 5 6 7 8 9 10

iv,d 0.5 0.5 0 0 0 0 0 0 0 0
iv,q 0.5 0.5 0 0 0 0 0 0 0 0
vf,d 0 0 0.4383 0.4383 0.0567 0.0567 0.0001 0 0 0
vf,q 0 0 0.0579 0.0579 0.4199 0.4199 0.017 0 0 0
ig,d 0 0 0.4392 0.4392 0.0574 0.0574 0 0 0 0
ig,q 0 0 0.057 0.057 0.4135 0.4135 0.0378 0 0 0
δ 0 0 0.0076 0.0076 0.0524 0.0524 0.9374 0 0 0.008
A 0 0 0 0 0 0 0 0.5 0.5 0
B 0 0 0 0 0.0001 0.0001 0.0077 0 0 0.992
C 0 0 0 0 0 0 0 0.5 0.5 0
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E.4 Alternative 2

Table E.7: The eigenvalues of the alternative 2 model when δ is estimated.

Eigenvalue Nr. Real Imaginary
1 -6.41E+07 + 312.79i
2 -6.41E+07 - 312.79i
3 -82.523 + 7459.5i
4 -82.523 - 7459.5i
5 -8548.8 + 0i
6 6416.2 + 0i
7 991.1 + 0i
8 -130 + 0.00032798i
9 -130 - 0.00032798i
10 -7.9189 + 0i

Table E.8: The participation factors related to the eigenvalues in Table E.7

Eigenvalue Number
1 2 3 4 5 6 7 8 9 10

iv,d 0.5 0.5 0 0 0 0 0 0 0 0
iv,q 0.5 0.5 0 0 0 0 0 0 0 0
vf,d 0 0 0.4999 0.4999 0.0001 0.0001 0.0001 0 0 0
vf,q 0 0 0.0001 0.0001 0.4977 0.4298 0.0098 0 0 0
ig,d 0 0 0.4999 0.4999 0.0001 0.0001 0.0001 0 0 0
ig,q 0 0 0.0001 0.0001 0.4537 0.489 0.0342 0 0 0
δ 0 0 0.0001 0.0001 0.0484 0.0808 0.9483 0 0 0.008
A 0 0 0 0 0 0 0 0.5 0.5 0
B 0 0 0 0 0.0001 0.0002 0.0076 0 0 0.992
C 0 0 0 0 0 0 0 0.5 0.5 0
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Appendix F
Eigenvalues and Participation factor
when δ is removed. Alternative 1
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Table F.1: Eigenvalues without the δ term. Alt1

Eigenvalue Nr. Real Imaginary
1 -6.41E+07 + 312.27i
2 -6.41E+07 - 312.27i
3 -175.01 + 7439.5i
4 -175.01 - 7439.5i
5 -1116.4 + 7598.7i
6 -1116.4 - 7598.7i
7 1097.6 + 0i
8 -130 + 0.00048418i
9 -130 - 0.00048418i
10 -7.929 + 0i

Table F.2: Participation factor without the δ term. Alt 1

Eigenvalue Number
1 2 3 4 5 6 7 8 9 10

iv,d 0.5 0.5 0 0 0 0 0 0 0 0
iv,q 0.5 0.5 0 0 0 0 0 0 0 0
vf,d 0 0 0.4568 0.4568 0.039 0.039 0.0001 0 0 0
vf,q 0 0 0.04 0.04 0.4333 0.4333 0.022 0 0 0
ig,d 0 0 0.4577 0.4577 0.0398 0.0398 0 0 0 0
ig,q 0 0 0.0392 0.0392 0.4249 0.4249 0.0488 0 0 0
δ 0 0 0.0063 0.0063 0.0628 0.0628 0.9226 0 0 0.0068
A 0 0 0 0 0 0 0 0.5 0.5 0
B 0 0 0 0 0.0001 0.0001 0.0065 0 0 0.9932
C 0 0 0 0 0 0 0 0.5 0.5 0
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Appendix G
Steady State Calculations, Alt1
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function F = alt_1_try(x,kp_cc,ki_cc,kp_pll,ki_pll,ivd_ref,ivq_ref,tau,vgd,vgq,vdc,
delta_ref,lf,lg,c,rf,rg,wg)
delta_real=x(7);
delta_estimate=atan2(x(4),x(3));
 
y_1=vdc*(x(1)-ivd_ref); 
y_2=lf*(x(1)*ivq_ref-x(2)*ivd_ref)+c*(x(3)*x(4)-x(4)*x(3))+tau*(delta_real-
delta_ref);
y_3=vdc*(x(2)-ivq_ref);
 
ed=-kp_cc*y_1+ki_cc*x(8);
eq=-kp_cc*y_3+ki_cc*x(10);
 
w_pll=-kp_pll*y_2+ki_pll*x(9);
 
 
F(1)=(ed-rf*x(1)+w_pll*(lf*x(2))-x(3))/lf; %ivd
F(2)=(eq-w_pll*(lf*x(1))-rf*x(2)-x(4))/lf; %ivq
 
F(3)=(w_pll*(c*x(4))+x(1)-cos(delta_real)*x(5)+sin(delta_real)*x(6))/c; %v0d
F(4)=(-w_pll*(c*x(3))+x(2)-sin(delta_real)*x(5)-cos(delta_real)*x(6))/c; %v0q
 
F(5)=(cos(delta_real)*x(3)+sin(delta_real)*x(4)-rg*x(5)+lg*wg*x(6)-vgd)/lg; %igd
F(6)=(-sin(delta_real)*x(3)+cos(delta_real)*x(4)-lg*wg*x(5)-rg*x(6)-vgq)/lg; %igq
 
F(7)=w_pll-wg; %delta
 
F(8)=-y_1; %A
F(9)=-y_2; %B
F(10)=-y_3; %C
 
end
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format short
clear
clc
% %LCL filter
lf=3.82e-3;
rf=0.05; %0.05
lg=300e-6;
c=60e-6;
rg=0.05;
vac=400;
% %CC
 kp_cc=0.5*700;
 ki_cc=65*700;
 
% %Grid
wg=2*pi*50; %Hz
vgd=(sqrt(2)*vac)/sqrt(3);
vgq=0;
vdc=700; 
% %PLL
 kp_pll = 180;
 ki_pll = 1437;
 tau=1;
 
%steady state
 
ivd_ref=10;
ivq_ref=0;
delta_ref=0;
 
 
 
fun= @ (x)alt_1_try(x,kp_cc,ki_cc,kp_pll,ki_pll,ivd_ref,ivq_ref,tau,vgd,vgq,vdc,
delta_ref,lf,lg,c,rf,rg,wg);
x0=[10;0;300;0;0;0;0;0;0;0];
X=fsolve(fun,x0)
 
ivd_0=X(1);
ivq_0=X(2);
v0d_0=X(3);
v0q_0=X(4);
igd_0=X(5);
igq_0=X(6);
delta_0=X(7);
A_0=X(8);
B_0=X(9);
C_0=X(10);
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Appendix H
Stability Calculations, Alt 1 Script
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format short g
 
syms lf rf lg c rg   %LCL
syms kp_cc ki_cc  %CC
syms kp_pll ki_pll tau % PLL
syms wg vgd vgq vdc %grid
syms ivd_ref ivq_ref delta_ref v0d_ref v0q_ref %Steady state
syms ivd ivq v0d v0q igd igq delta A B C %States +virtual states
 
%% Simulink model
vac=400;%v
fsw=10e+3; %Switch. freq
fsamp=10e+3; %sampling time
Tf=0.0005;   
 
%% Real values
lf_0=3.82e-3;
rf_0=0.05;
c_0=60e-6;
rg_0=0.05;
lg_0=300e-6;
%CC
 kp_cc_0=0.5*700;
 ki_cc_0=65*700;
 
%Grid
wg_0=2*pi*50; %Hz
vgd_0=(sqrt(2)*vac)/sqrt(3);
vgq_0=0;
vdc_0=700; 
 
 
%PLL
kp_pll_0 = 180;
ki_pll_0 = 1437;
tau_0=1;
 
%% Jacobian
delta_real=delta;
delta_est=atan2(v0q,v0d);
 
y_1=vdc*(ivd-ivd_ref); 
y_2=lf*(ivd*ivq_ref-ivq*ivd_ref)+c*(v0d*v0q_0-v0q*v0d_0)+tau*(delta_real-delta_ref);
y_3=vdc*(ivq-ivq_ref);
 
ed=-kp_cc*y_1+ki_cc*A;
eq=-kp_cc*y_3+ki_cc*C;
 
w_pll=-kp_pll*y_2+ki_pll*B;
 
d_ivd=(ed-rf*ivd+w_pll*(lf*ivq)-v0d)/lf; 
d_ivq=(eq-w_pll*(lf*ivd)-rf*ivq-v0q)/lf;
 
d_v0d=(w_pll*(c*v0q)+ivd-cos(delta_real)*igd+sin(delta_real)*igq)/c;
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d_v0q=(-w_pll*v0d*c+ivq-sin(delta_real)*igd-cos(delta_real)*igq)/c;
 
d_igd=(cos(delta_real)*v0d+sin(delta_real)*v0q-rg*igd+lg*wg*igq-vgd)/lg;
d_igq=(-sin(delta_real)*v0d+cos(delta_real)*v0q-lg*wg*igd-rg*igq-vgq)/lg;
 
d_delta=w_pll-wg;
d_A=-y_1;
d_B=-y_2;
d_C=-y_3;
 
f=[d_ivd,d_ivq,d_v0d,d_v0q,d_igd,d_igq,d_delta,d_A,d_B,d_C]; 
x=[ivd,ivq,v0d,v0q,igd,igq,delta,A,B,C] ;
u=[ivd_ref,ivq_ref,delta_ref];
 
Jac_A = jacobian(f,x); %Calculate the A matrix algebraic
Jac_B = jacobian (f,u); %Calculate the B matrix algebraic
 
 
ivd_ref_0=ivd_0;
ivq_ref_0=ivq_0;
delta_ref_0=delta_0;
v0d_ref_1=v0d_0; 
v0q_ref_1=v0q_0; 
 
%Substitute the algebraic components of the A and B matrix with values.
Aaaa=subs(Jac_A,[ivd,ivq,v0d,v0q,igd,igq,delta,A,B,C,ivd_ref,ivq_ref,delta_ref,
kp_cc,kp_pll,ki_cc,ki_pll,lf,rf,c,lg,rg,wg,vgd,vgq,vdc,tau,v0d_ref,v0q_ref]...
    ,[ivd_0,ivq_0,v0d_0,v0q_0,igd_0,igq_0,delta_0,A_0,B_0,C_0,ivd_ref_0,ivq_ref_0,
delta_ref_0,kp_cc_0,kp_pll_0,ki_cc_0,ki_pll_0,lf_0,rf_0,c_0,lg_0,rg_0,wg_0,vgd_0,
vgq_0,vdc_0,tau_0,v0d_ref_1,v0q_ref_1]); %Bytte ut bokstaver med værdier
Bbbb=subs(Jac_B,[ivd,ivq,v0d,v0q,igd,igq,delta,A,B,C,ivd_ref,ivq_ref,delta_ref,
kp_cc,kp_pll,ki_cc,ki_pll,lf,rf,c,lg,rg,wg,vgd,vgq,vdc,tau,v0d_ref,v0q_ref],...
[ivd_0,ivq_0,v0d_0,v0q_0,igd_0,igq_0,delta_0,A_0,B_0,C_0,ivd_ref_0,ivq_ref_0,
delta_ref_0,kp_cc_0,kp_pll_0,ki_cc_0,ki_pll_0,lf_0,rf_0,c_0,lg_0,rg_0,wg_0,vgd_0,
vgq_0,vdc_0,tau_0,v0d_ref_1,v0q_ref_1]);
 
A_mat=double(Aaaa);
B_mat=double(Bbbb);
C_mat=[1,0,0,0,0,0,0,0,0,0;0,1,0,0,0,0,0,0,0,0;0,0,1,0,0,0,0,0,0,0;
0,0,0,1,0,0,0,0,0,0;0,0,0,0,1,0,0,0,0,0;0,0,0,0,0,1,0,0,0,0;0,0,0,0,0,0,1,0,0,0;
0,0,0,0,0,0,0,1,0,0;0,0,0,0,0,0,0,0,1,0;0,0,0,0,0,0,0,0,0,1]';
D_mat=[0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0;0,0,0,0,0,0,0,0,0,0]';
 
% Participation factor
[V,D]=eig(A_mat);
V; %Right eigenvector
W=inv(V); %Left eigenvectors
Eigen=eig(A_mat);
 
%% Participation factor
for i=1:10
    for k=1:10
    P(k,i)=abs(V(k,i)*W(i,k));
    k=k+1;
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    end
    i=i+1;
end
 
% In order to get the sum of each eigenvalue to 1
for j=1:10
    for g=1:10
        G(g,j)=P(g,j)/sum(P(:,j));
        g=g+1;
    end
    j=j+1;
end
 
%% For the plotting of the eigenvalues as well as changing parameters to track the 
different eigenvalues. 
 
% %% Plot Eigenvalue 
% figure; hold on
% %lg_0=0 %linspace(350e-10,100e-7,6);
% for tau_0=1 %Possibility to chane the parameter in order to trach the change of 
the different eigenvalues
% Aaa=subs(Jac_A,[ivd,ivq,v0d,v0q,igd,igq,delta,A,B,C,ivd_ref,ivq_ref,delta_ref,
kp_cc,kp_pll,ki_cc,ki_pll,lf,rf,c,lg,rg,wg,vgd,vgq,vdc,tau]...
%     ,[ivd_0,ivq_0,v0d_0,v0q_0,igd_0,igq_0,delta_0,A_0,B_0,C_0,ivd_ref_0,ivq_ref_0,
delta_ref_0,kp_cc_0,kp_pll_0,ki_cc_0,ki_pll_0,lf_0,rf_0,c_0,lg_0,rg_0,wg_0,vgd_0,
vgq_0,vdc_0,tau_0]);
% A_matrix=double(Aaa);
% GR=eig(A_matrix);
% plot(GR,'*');
% xlabel('Real')
% ylabel('Imaginary')
% end
% 
% 
% %% Participation factor
% [V,D]=eig(A_matrix);
% V; %Right eigenvector
% W=inv(V); %Left eigenvectors
% Eigen=eig(A_matrix);
% %% Participation factor
% for i=1:10
%     for k=1:10
%     P(k,i)=abs(V(k,i)*W(i,k));
%     k=k+1;
%     end
%     i=i+1;
% end
% 
% % In order to get the sum of each eigenvalue to 1
% for j=1:10
%     for g=1:10
%         G(g,j)=P(g,j)/sum(P(:,j));
%         g=g+1;
%     end
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%     j=j+1;
% end
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