Vis enkel innførsel

dc.contributor.authorNahavandchi, Hossein
dc.date.accessioned2023-04-19T12:48:04Z
dc.date.available2023-04-19T12:48:04Z
dc.date.created2004-12-14T11:12:18Z
dc.date.issued2004
dc.identifier.citationKart og Plan. 2004, 64 (1), 46-56.en_US
dc.identifier.issn0047-3278
dc.identifier.urihttps://hdl.handle.net/11250/3063861
dc.description.abstractThe geoid is defined as an equipotential surface of the Earth�s actual gravity field inside the topographical masses on land (in most cases) and more or less coinciding with mean sea level at sea. Over the last decade, there has been an increased interest in the determination of the geoid. This is mainly due to the demands for height transformation from users of GPS. Physical heights in geodesy are referred to the geoid. The knowledge of the geoidal height is thus necessary for transforming the ellipsoidal to physical heights and vice versa. The geoid represents a vertical datum for heights used in many countries. The improved knowledge of the geoid model can contribute to many other applications of Earth studies like ocean circulation, climate, post-glacial rebound, plate tectonics and mantle convection studies. This article reviews some recent developments within geoidal height determination and its theoretical limitations.en_US
dc.language.isoengen_US
dc.publisherUniversitetsforlageten_US
dc.titleThe Quest for a Precise Geoidal Height Modelen_US
dc.title.alternativeThe Quest for a Precise Geoidal Height Modelen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionacceptedVersionen_US
dc.source.pagenumber46-56en_US
dc.source.volume64en_US
dc.source.journalKart og Planen_US
dc.source.issue1en_US
dc.identifier.cristin426148
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel