Vis enkel innførsel

dc.contributor.authorMudgalgundurao, Raghavendra
dc.contributor.authorSchuch, Patrick
dc.contributor.authorRaja, Kiran
dc.contributor.authorRamachandra, Raghavendra
dc.contributor.authorDamer, Naser
dc.date.accessioned2023-02-21T15:20:22Z
dc.date.available2023-02-21T15:20:22Z
dc.date.created2022-09-22T14:03:23Z
dc.date.issued2022
dc.identifier.citationIET Biometrics. 2022, .en_US
dc.identifier.issn2047-4938
dc.identifier.urihttps://hdl.handle.net/11250/3052861
dc.description.abstractIdentity documents (or IDs) play an important role in verifying the identity of a person with wide applications in banks, travel, video-identification services and border controls. Replay or photocopied ID cards can be misused to pass ID control in unsupervised scenarios if the liveness of a person is not checked. To detect such presentation attacks on ID card verification process when presented virtually is a critical step for the biometric systems to assure authenticity. In this paper, a pixel-wise supervision on DenseNet is proposed to detect presentation attacks of the printed and digitally replayed attacks. The authors motivate the approach to use pixel-wise supervision to leverage minute cues on various artefacts such as moiré patterns and artefacts left by the printers. The baseline benchmark is presented using different handcrafted and deep learning models on a newly constructed in-house database obtained from an operational system consisting of 886 users with 433 bona fide, 67 print and 366 display attacks. It is demonstrated that the proposed approach achieves better performance compared to handcrafted features and Deep Models with an Equal Error Rate of 2.22% and Bona fide Presentation Classification Error Rate (BPCER) of 1.83% and 1.67% at Attack Presentation Classification Error Rate of 5% and 10%.en_US
dc.language.isoengen_US
dc.publisherJohn Wiley & Sons Ltd on behalf of The Institution of Engineering and Technology.en_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titlePixel-wise supervision for presentation attack detection on identity document cardsen_US
dc.title.alternativePixel-wise supervision for presentation attack detection on identity document cardsen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber383-395en_US
dc.source.volume11en_US
dc.source.journalIET Biometricsen_US
dc.source.issue5en_US
dc.identifier.doi10.1049/bme2.12088
dc.identifier.cristin2054392
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal