Vis enkel innførsel

dc.contributor.authorPrentice, Elizabeth
dc.contributor.authorHonoré-Livermore, Evelyn
dc.contributor.authorBakken, Sivert
dc.contributor.authorHenriksen, Marie Bøe
dc.contributor.authorBirkeland, Roger
dc.contributor.authorHjertenæs, Martine Aasen
dc.contributor.authorGjersvik, Amund
dc.contributor.authorJohansen, Tor Arne
dc.contributor.authorAgelet, Fernando Aguado
dc.contributor.authorNavarro-Medina, Fermin
dc.date.accessioned2023-02-16T13:45:19Z
dc.date.available2023-02-16T13:45:19Z
dc.date.created2022-11-07T12:34:07Z
dc.date.issued2022
dc.identifier.citationRemote Sensing. 2022, 14 (18), .en_US
dc.identifier.issn2072-4292
dc.identifier.urihttps://hdl.handle.net/11250/3051572
dc.description.abstractAssembly, Integration, and Verification/Testing (AIV or AIT) is a standardized guideline for projects to ensure consistency throughout spacecraft development phases. The goal of establishing such a guideline is to assist in planning and executing a successful mission. While AIV campaigns can help reduce risk, they can also take years to complete and be prohibitively costly for smaller new space programs, such as university CubeSat teams. This manuscript outlines a strategic approach to the traditional space industry AIV campaign through demonstration with a 6U CubeSat mission. The HYPerspectral Smallsat for Ocean observation (HYPSO-1) mission was developed by the Norwegian University of Science and Technology’s (NTNU) SmallSatellite Laboratory in conjunction with NanoAvionics (the platform provider). The approach retains critical milestones of traditional AIV, outlines tailored testing procedures for the custom-built hyperspectral imager, and provides suggestions for faster development. A critical discussion of de-risking and design-driving decisions, such as imager configuration and machining custom parts, highlights the consequences that helped, or alternatively hindered, development timelines. This AIV approach has proven key for HYPSO-1’s success, defining further development within the lab (e.g., already with the second-generation, HYPSO-2), and can be scaled to other small spacecraft programs throughout the new space industry.en_US
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titlePre-Launch Assembly, Integration, and Testing Strategy of a Hyperspectral Imaging CubeSat, HYPSO-1en_US
dc.title.alternativePre-Launch Assembly, Integration, and Testing Strategy of a Hyperspectral Imaging CubeSat, HYPSO-1en_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber33en_US
dc.source.volume14en_US
dc.source.journalRemote Sensingen_US
dc.source.issue18en_US
dc.identifier.doi10.3390/rs14184584
dc.identifier.cristin2069928
dc.relation.projectNorges forskningsråd: 223254en_US
dc.relation.projectNorges forskningsråd: 270959en_US
dc.relation.projectESA - den europeiske romfartsorganisasjonen: PRODEX—4000132515en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal