Vis enkel innførsel

dc.contributor.authorKong, Long
dc.contributor.authorAi, Yun
dc.contributor.authorLei, Lei
dc.contributor.authorKaddoum, Georges
dc.contributor.authorChatzinotas, Symeon
dc.contributor.authorOttersten, Björn
dc.date.accessioned2023-01-17T11:45:36Z
dc.date.available2023-01-17T11:45:36Z
dc.date.created2022-01-13T12:20:22Z
dc.date.issued2021
dc.identifier.citationEURASIP Journal on Wireless Communications and Networking. 2021, 2021 (1), .en_US
dc.identifier.issn1687-1472
dc.identifier.urihttps://hdl.handle.net/11250/3043982
dc.description.abstractPhysical layer security (PLS) has been proposed to afford an extra layer of security on top of the conventional cryptographic techniques. Unlike the conventional complexity-based cryptographic techniques at the upper layers, physical layer security exploits the characteristics of wireless channels, e.g., fading, noise, interference, etc., to enhance wireless security. It is proved that secure transmission can benefit from fading channels. Accordingly, numerous researchers have explored what fading can offer for physical layer security, especially the investigation of physical layer security over wiretap fading channels. Therefore, this paper aims at reviewing the existing and ongoing research works on this topic. More specifically, we present a classification of research works in terms of the four categories of fading models: (i) small-scale, (ii) large-scale, (iii) composite, and (iv) cascaded. To elaborate these fading models with a generic and flexible tool, three promising candidates, including the mixture gamma (MG), mixture of Gaussian (MoG), and Fox’s H-function distributions, are comprehensively examined and compared. Their advantages and limitations are further demonstrated via security performance metrics, which are designed as vivid indicators to measure how perfect secrecy is ensured. Two clusters of secrecy metrics, namely (i) secrecy outage probability (SOP), and the lower bound of SOP; and (ii) the probability of nonzero secrecy capacity (PNZ), the intercept probability, average secrecy capacity (ASC), and ergodic secrecy capacity, are displayed and, respectively, deployed in passive and active eavesdropping scenarios. Apart from those, revisiting the secrecy enhancement techniques based on Wyner’s wiretap model, the on-off transmission scheme, jamming approach, antenna selection, and security region are discussed.en_US
dc.language.isoengen_US
dc.publisherSpringerOpenen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleAn overview of generic tools for information-theoretic secrecy performance analysis over wiretap fading channelsen_US
dc.title.alternativeAn overview of generic tools for information-theoretic secrecy performance analysis over wiretap fading channelsen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber21en_US
dc.source.volume2021en_US
dc.source.journalEURASIP Journal on Wireless Communications and Networkingen_US
dc.source.issue1en_US
dc.identifier.doi10.1186/s13638-021-02065-4
dc.identifier.cristin1980352
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal