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1  Introduction
As stated in the latest released statistics by the International Telecommunications Union 
(ITU) in 2020 [1], COVID-19, to some extent, acts as an accelerator that pushes con-
sumers and businesses to largely adopt digital services and technologies, which in return 
quickens the digital transformation for societies, business, and governments. Examples, 
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Physical layer security (PLS) has been proposed to afford an extra layer of security on 
top of the conventional cryptographic techniques. Unlike the conventional complex-
ity-based cryptographic techniques at the upper layers, physical layer security exploits 
the characteristics of wireless channels, e.g., fading, noise, interference, etc., to enhance 
wireless security. It is proved that secure transmission can benefit from fading channels. 
Accordingly, numerous researchers have explored what fading can offer for physi-
cal layer security, especially the investigation of physical layer security over wiretap 
fading channels. Therefore, this paper aims at reviewing the existing and ongoing 
research works on this topic. More specifically, we present a classification of research 
works in terms of the four categories of fading models: (i) small-scale, (ii) large-scale, 
(iii) composite, and (iv) cascaded. To elaborate these fading models with a generic and 
flexible tool, three promising candidates, including the mixture gamma (MG), mixture 
of Gaussian (MoG), and Fox’s H-function distributions, are comprehensively examined 
and compared. Their advantages and limitations are further demonstrated via security 
performance metrics, which are designed as vivid indicators to measure how perfect 
secrecy is ensured. Two clusters of secrecy metrics, namely (i) secrecy outage prob-
ability (SOP), and the lower bound of SOP; and (ii) the probability of nonzero secrecy 
capacity (PNZ), the intercept probability, average secrecy capacity (ASC), and ergodic 
secrecy capacity, are displayed and, respectively, deployed in passive and active eaves-
dropping scenarios. Apart from those, revisiting the secrecy enhancement techniques 
based on Wyner’s wiretap model, the on-off transmission scheme, jamming approach, 
antenna selection, and security region are discussed.
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including online learning, digital classrooms, contactless payment, zoom meetings, etc., 
are reshaping everyone’s life pattern. In light of the highly confidential data streams 
flowing over the wireless transmission medium, the legitimate data transactions enjoy 
the convenience largely brought by the inherent openness of the wireless transmission 
medium while facing the vulnerability of being exposed to illegitimate evil parties.

Traditionally, cryptography is an appealing approach to achieve data confidentiality. 
It is designed to prevent data disclosure to unauthorized devices and malicious users 
[2]. Although secrecy is guaranteed through the key-based encoding and decoding pro-
cess and requires additional computing resources, it in fact assumes there exist error-
free links at the physical layer. Such an assumption would be unfeasible for the emerging 
decentralized networks (e.g., resource-limited sensors or radio-frequency identification 
(RFID) networks) due to the high computational complexity and necessary key distribu-
tion and management [3]. Besides, the impacts from the impairments of wireless trans-
mission medium on physical layer security, i.e., the randomness of wireless channels, are 
totally ignorant in cryptography.

Unlike the conventional complexity-based cryptographic techniques at upper lay-
ers via encryption, physical layer security (PLS), being a promising technology com-
plementary to cryptography and certainly not as a replacement, takes full advantage of 
the physical properties of the wireless propagation environment via the combination of 
signaling and coding mechanism to provide additional secrecy at the bottom layer [4, 
5]. It is proved suitable and feasible for achieving information-theoretic security against 
eavesdropping attacks. More specifically, under the cover of the randomness of noise, 
fading, and interference, different users will receive different noisy copies of the private 
messages. This can enable the confidentiality of legitimate transmissions at the physical 
layer.

As a promising approach, physical layer security is built on the two pioneering works 
laid by Shannon [6] and Wyner [7], where the notion of perfect secrecy and the degraded 
wiretap channel model are introduced, respectively. It is noteworthy to point out that 
Wyner’s result established the PLS from the system model level, and he considered the 
three-user scenario, consisting of a legitimate source (Alice), an intended legitimate 
user (Bob), and an eavesdropper (Eve) over the discrete memoryless wiretap channel. 
In [8], Wyner’s wiretap model was extended to the Gaussian wiretap channel by Leung 
et al., and they found the fundamental basis of secrecy capacity ( Cs ), which is defined 
as the difference between the channel capacity of the main channel (Alice to Bob, i.e., 
CM ) and that of the wiretap channel (Alice to Eve, i.e., CW  ), namely, Cs = CM − CW  . The 
conceptual implication of secrecy capacity indicates that only when the legitimate link 
experiences better quality of received signals compared to the wiretap channel, posi-
tive secrecy can be surely guaranteed. Inspired by this fundamental work, considerable 
research efforts have been devoted to investigate the security performance metrics over 
wiretap fading channels, e.g., [9, 10]. The insights drawn from these works offer math-
ematical proofs showing that wireless channels’ fading property can be reversely used to 
enhance secrecy.

Observing the existing books, surveys, and tutorials related to the PLS [2–5, 11–
30], numerous researchers from both the wireless communication and signal pro-
cessing communities summarized the state-of-the-art of PLS from the perspective of 
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application scenarios, e.g., 5G wireless networks [25], cooperative networks [26], and 
ultra-reliable and low-latency communications (URLLC) [27], and secrecy enhance-
ment, including jamming schemes [3, 19, 26], multiple-antenna techniques [24], and 
wiretap coding [14, Chapter  6] [25] (e.g., low-density parity-check (LDPC) codes, 
polar codes, and lattice codes.) . It is reported in [2] that Zou et  al. have classified 
the PLS technique into four categories: information-theoretic security, artificial-noise 
aided security, security-oriented beamforming, security diversity methods, and physi-
cal layer secret key generation.

As an indispensable element of PLS techniques, information-theoretic security has 
been further classified into three categories according to different wiretap channels: (i) 
memoryless wiretap channels; (ii) Gaussian wiretap channels; and (iii) fading wiretap 
channels. However, the majority of information-theoretic security is centered around 
the fading wiretap channels, e.g., see references [9, 10, 31]. The pioneering work is laid 
by Bloch et  al. [9], where the authors explored the impacts of fading characteristic of 
wireless channels on the security issue and proposed two performance metrics, i.e., the 
average secrecy capacity (ASC) and outage probability of secrecy capacity (equivalently, 
secrecy outage probability (SOP)), to measure information-theoretic security. At the 
same year, Gopala et al. [10] investigated the perfect secrecy capacity over wiretap fading 
channels for two scenarios: (i) the full channel state information (CSI) is available at the 
transmitter; and (ii) only the main channel CSI is perfectly known at the transmitter. The 
former scenario represents the active eavesdropping, to be specific, Eve is a legitimate 
network participant (e.g., in a time-division multiple-access (TDMA) environment). As 
a result, Alice is capable of accessing Eve’s CSI, as well as Bob’s CSI. Alice can adapt her 
coding scheme to every channel coefficient realization. Therefore, the ASC is chosen as 
the security performance metric. In contrast, the latter scenario indicates the presence 
of a passive eavesdropper. More specifically, Eve is a totally silent network adversary and 
only capable of wiretaping the Alice-Bob link. As such, Alice has no CSI knowledge of 
the wiretap channel, she cannot flexibly adapt her transmission rate to guarantee perfect 
secrecy. The SOP is correspondingly adopted as the key secrecy metric to evaluate how 
perfect secrecy is compromised.

Inspired by these fundamental research works, numerous research works focus 
on analyzing the security performance metrics over a diverse body of fading wire-
tap channels for the sake of better understanding the impacts of fading characteris-
tic on secure communications, to list some, Rayleigh [9], Nakagami-m, Weibull [32], 
Rician (Nakagami-q) [33, 34], Hoyt (Nakagami-n) [35, 36], Lognormal [37], α − µ 
(equivalently generalized Gamma or Stacy) [38–42], κ − µ [43–46], η − µ [47], gen-
eralized-K ( KG ) [48–51], extend generalized-K (EGK) [52], Fisher-Snedecor F  [53, 
54], Gamma-Gamma [55], shadowed κ − µ [56], double shadowed Rician [57], Fox’s 
H-function [52], cascaded Rayleigh/Nakagami-m/α − µ [58–60], cascaded κ − µ [61], 
α − κ − µ/α − η − µ [62], Beaulieu-Xie [63], α − κ − η − µ [64, 65], two-wave with 
diffuse power (TWDP) [31], N-wave with diffuse power (NWDP) [66], κ − µ/Gamma 
[67], Fluctuating Beckmann [68], correlated Rayleigh [69], correlated composite Nak-
agami-m/Gamma [70], correlated α − µ [71], correlated shadowed κ − µ [72], mixed 
η − µ and Málaga [73], Málaga [74–78], fluctuating two-ray (FTR) channels [79, 
80]. The usage of these fading channels is examined practical and feasible in various 
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wireless communications, such as, cellular networks [81], cellular device-to-device 
(D2D), vehicle-to-vehicle (V2V) communications [44], radio frequency-free space 
optical (RF-FSO) systems [55], mmWave communications [79], underwater acoustic 
communications (UAC), frequency diverse array (FDA) communications [82], body-
centric fading channels, unmanned aerial vehicle (UAV) systems, land mobile satellite 
(LMS) [56, 83], etc.

To the authors’ best knowledge, no survey or tutorial paper has ever focused on 
analyzing the security performance metrics over wiretap fading channels. To this end, 
the main contributions of this work are listed as follows: 

1.	 reviewing the state-of-the-art of information-theoretic security over four kinds of 
wiretap fading models: (i) small-scale, (ii) large-scale, (iii) composite, and (iv) cas-
caded.

2.	 displaying two clusters of security metrics to quantify information-theoretic security 
in the presence of active and passive eavesdropping.

3.	 summarizing three generic tools, i.e., the mixture Gamma (MG) distribution, the 
mixture of Gaussian (MoG) distribution, and Fox’s H-function distribution, which 
are used to assist the derivation of security metrics. These three tools are especially 
advantageous when the main channel and the wiretap channel confront different 
type of wiretap fading channels, e.g., the mixture of small-scale fading and composite 
fading models.

4.	 presenting the application scenarios, advantages, and limitations of the three afore-
mentioned statistical tools. The insights drawn from the three tools demonstrate 
their flexibility to largely encompass the existing four kinds of wiretap fading models 
via adequately configuring fading channel characteristics.

5.	 providing four secrecy enhancement techniques, including the on-off transmission 
scheme, jamming approach (artificial noise (AN) and artificial fast fading (AFF)), 
antenna selection, and security region for Wyner’s wiretap channel model.

The remainder of this paper is organized as follows: Sect.  2 presents Wyner’s wiretap 
channel model, followed by Sect.  3, where the security performance metrics are pre-
sented. In Sect. 4, we review physical layer security over fading wiretap channels accord-
ing to the fading channel models and also present three useful and generic tools used to 
assist the security metrics analysis. In Sect.  5, we introduce the secrecy enhancement 
schemes based on classic wiretap fading channels. Finally, Sect. 6 concludes this paper.

2 � Wyner’s wiretap channel model
Consider the classic Alice-Bob-Eve wiretap channel model, as shown in Fig. 1, where 
Alice intends to send confidential messages to Bob in the presence of a malicious 
eavesdropper (Eve). The instantaneous signal-to-noise ratio (SNR) at Bob (B) and Eve 
(E) is expressed as γi = γ̄igi, i ∈ {B,E} , where γ̄i is the average received SNR, and gi is 
the channel gain, which can be possibly modeled by any fading channel distributions.
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3 � Security performance metrics
According to [9], the instantaneous secrecy capacity for one realization of the ( γB, γE ) 
pair over quasi-static wiretap fading channels is given by

where [x]+ △= max(x, 0).
Based on the definition of the instantaneous secrecy capacity, security performance 

metrics used to evaluate the PLS over wiretap fading channels are further developed 
according to the availability of full CSI or partial CSI of Wyner’s wiretap model. In prac-
tice, the aforementioned two scenarios correspond to the passive eavesdropping and 
active eavesdropping, respectively. More specifically, it is highly questionable to have 
any knowledge of an evil eavesdropper’s CSI. As such, security performance metrics are 
classified into two categories (i) the SOP and the lower bound of SOP; and (ii) the prob-
ability of nonzero secrecy capacity (PNZ) or the intercept probability, ASC, and ergodic 
secrecy capacity. To this end, the two clusters of security performance metrics are vivid 
indicators showing whether perfect secrecy can be surely achieved or not, which are 
shown and compared in Table 1.

(1)Cs(γB, γE) =




log2 (1+ γB)
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CM

− log2 (1+ γE)
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CW






+

,

Transmitter
(Alice)

Legitimate receiver
(Bob)

Eavesdropper
(Eve)

Private messages

Interference

Fig. 1  A three-node wireless wiretap system model

Table 1  PLS statistical performance metrics

Scenarios Security metrics CSI availability

Passive eavesdropping SOP, lower bound of SOP Partial CSI (only 
main channel)

Active eavesdropping ASC, PNZ, intercept probability, ergodic secrecy 
capacity

Full CSI
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3.1 � Exact security performance metrics

3.1.1 � Secrecy outage probability

In the presence of a passive eavesdropper, who only listens to the main channel with-
out sending any probing messages, Alice transmits her private messages at a constant 
secrecy rate Rt to Bob. With this in mind, perfect secrecy can be assured only when Rt 
falls below the instantaneous secrecy capacity Cs . Strikingly, the SOP is commonly seen 
as a key secrecy indicator used for passive eavesdropping, it measures the level that how 
perfect secrecy is compromised. Mathematically speaking, the SOP is the probability 
that the instantaneous secrecy capacity is lower than a predetermined secrecy rate Rt,

3.1.2 � The probability of nonzero secrecy capacity

The PNZ is regarded as another important secrecy metric that measures the existence of 
positive secrecy capacity with a probability,

where step (a) is subsequently transformed from the SOP metric by setting Rt = 0.

3.1.3 � Intercept probability

In contrast to the PNZ metric, the intercept probability denotes the probability of the 
occurrence of an intercept event. In other words, it displays the probability of the occur-
rence of a negative instantaneous secrecy capacity event, which is mathematically inter-
preted as

Compared to the PNZ metric, fewer works have investigated the intercept probability 
[84–87]. For instance, Zou and Wang in [85] studied the intercept probability of the 
industrial wireless sensor networks in the presence of an eavesdropping attacker.

3.1.4 � Average secrecy capacity

When an active eavesdropper appears, the ASC serves as a critical measurement that 
guides Alice to adapt her transmission rate based on CM and CW  so as to achieve perfect 
secrecy. In other words, the ASC is a metric that evaluates how much achievable secrecy 
rate can be guaranteed. It is mathematically defined as

where E[·] is the expectation operator.

(2)
Pout(Rt) = Pr(Cs < Rt)

= Pr(γB < 2RtγE + 2Rt − 1),

(3)

Pnz = Pr(Cs > 0)

= Pr(γB > γE)

(a)= 1− Pout(Rt = 0),

(4)
Pint = Pr(Cs < 0)

= Pr(γB < γE)

= 1− Pnz .

(5)C̄ = E[Cs(γB, γE)],
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3.2 � Security performance bounds

The usage of non-elementary functions is widely used to describe the statistical char-
acteristics of fading models, e.g., the κ − µ distribution with the modified Bessel 
function of the first kind in its probability density function (PDF) and the general-
ized Marcum Q function in its cumulative distribution function (CDF), and the EGK 
distribution with the extended incomplete Gamma function in its PDF. Obviously, the 
existence of those special functions makes it highly intractable to deduce the secu-
rity performance metrics embedded with both the PDF and CDF of the instantane-
ous SNR γi simultaneously. As a result, the acquisition of exact security performance 
metrics with closed-form expressions is a challenging issue, security performance 
bounds, including the lower bound of the SOP and ergodic secrecy capacity, are in 
turn adopted as effective alternatives in many works.

3.2.1 � The lower bound of SOP

The exact SOP can be accurately approximated by its lower bound when (i) the given 
transmission rate tends to zero, i.e., Rt → 0 ; and (ii) Eve is closely located to Alice, 
which can be physically interpreted as Eve having an extremely high average received 
SNR, i.e., γ̄E → ∞ . In this context, the lower bound of SOP can be computed as

Such an alternative has been widely investigated (see references [38, 39, 48, 53, 60]), and 
was shown to provide a fairly tight approximation.

3.2.2 � Ergodic secrecy capacity

As an appropriate secrecy measure to characterize the time-varying feature of wire-
less channels, the ergodic secrecy capacity is consequently utilized to quantify the 
ergodic features of wireless channels [42, 88–91]. The ergodic secrecy capacity is 
mathematically evaluated by averaging the channel capacity over all fading channel 
realizations, which is mathematically computed as follows,

For instance, the authors in [92] investigated the ergodic secrecy rate of downlink mul-
tiple-input multiple-output (MIMO) systems with limited CSI feedback. Similarly, con-
sidering the zero-forcing (ZF) beamforming at Alice and ZF detectors at Bob and Eve, 
the upper and lower bounds of the ergodic secrecy capacity of MIMO systems were 
explored in [90].

(6)
P

L
out = Pr(γB < 2RtγE)

< Pr(γB < 2RtγE + 2Rt − 1).

(7)E(Cs) =
[
E[log2(1+ γB)] − E[log2(1+ γE)

]+
.
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4 � Secrecy characterization
In wireless communication systems, the transmitted signals are reflected, diffracted, 
and scattered from objects that are present on their path to the receivers. The received 
signals experience fading (multipath) and shadowing (signal power attenuation or 
pathloss) phenomena, which pose destructive and harmful impacts at the receiver 
sides. The essence of PLS lies in reversely using the impairments of wireless channels 
as secrecy enhancement means.

Under the assumption that the main and wiretap channels undergo independent 
fading conditions, this section mainly presents the security performance analysis over 
wiretap fading channels according to the following four categories.

4.1 � Exact secrecy analysis

4.1.1 � Small‑scale fading channels

The random changes in signal amplitude and phase from the spatial positioning between 
a receiver and a transmitter is referred to small-scale fading. The well-known small-scale 
fading models are Rayleigh, Nakagami-m, Rician, α − µ , etc. The simple and tractable 
form of these models makes small-scale fading appealing and popular in the security 
and reliability performance analysis. Examples can be found in [9, 33, 38–41], where 
the SOP, PNZ, and ASC metrics are analyzed with either closed-form or highly tight 
approximated expressions. It is noteworthy of mentioning that the α − µ distribution 
can be reduced to Rayleigh ( α = 2,µ = 1 ), Nakagami-m ( α = 2,µ = m ), Weibull ( α is 
the fading parameter, µ = 1 ), and Gamma ( α = 1 , µ is the fading parameter) distribu-
tions by properly attributing the values of α and µ . To this end, the applicability and 
flexibility of the α − µ distribution have been well explored in the literature. Besides, the 
TWDP fading model is also of high flexibility as it includes Rayleigh, Rician, and hyper-
Rayleigh as special cases. The TWDP model characterizes propagating scenarios where 
the received signal contains two strong, specular multipath waves, moreover, it can also 
model a link worse than Rayleigh fading. More importantly, it provides a good fit to the 
the real-world frequency-selective fading data from wireless sensor networks [93]. The 
PLS investigation over TWDP wiretap fading channels was studied in [31]. Apart from 
the aforementioned works, in [94], the authors studied the effect of eavesdroppers’ loca-
tion uncertainty on the SOP metric, where Eve is located in a ring-shaped area around 
Alice and undergoes Rayleigh fading.

Another interesting direction of PLS over small-scale fading channels lies in the 
secrecy investigation over correlated fading channels. The correlation is caused due to 
the distances between Bob and Eve, or the scattering environments. The physical cor-
relation essentially makes the fading statistics, i.e., the mathematical representation of 
the joint PDF of γB and γE , fairly complex and eventually makes it intractable and highly 
difficult to obtain exact closed-form security performance metrics, instead, secrecy per-
formance bounds are derived (see references [69, 71]).

4.1.2 � Large‑scale fading channels

The so-called large-scale fading results from signal attenuation due to signal propaga-
tion over large distance and diffraction around large objects, e.g., hills, mountains, for-
ests, billboards, buildings, etc., in the propagation path. One widely studied example of 
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large-scale fading channels is the Lognormal distribution. However, its complex math-
ematical form hinders the derivation of exact reliability and security performance 
expressions. For instance, Pan et al. [37] investigated the PLS over non-small scale fading 
channels, wherein independent/correlated Lognormal fading channels and composite 
fading channels were considered and approximated security performance representa-
tions were derived.

4.1.3 � Composite fading channels

Different from the small-scale (fading) and large-scale (shadowing) fading models, 
composite fading models are proposed to account for the effects of both small-scale 
and large-scale fading simultaneously. For instance, Kumar et al. in [44] presented the 
SOP, PNZ, and ASC over κ − µ fading channels and explored the obtained results 
in several wireless communication scenarios, including cellular D2D, body area net-
works (BAN), and V2V. Moualeu and Hamouda in [46] subsequently extended the 
results in [44] to the single-input multiple-output (SIMO) scenario and derived the 
ASC and lower bound of SOP. More recently, to elaborate the shadowing effect of 
wireless channels, the authors in [57, 72] investigated the security performance over 
the shadowed Rician and κ − µ wiretap fading channels.

Other widely used fading models, e.g., generalized-K , Rayleigh/Lognormal (RL), 
Nakagami-m/Lognormal (NL), Gamma-Gamma, and Fisher-Snedecor F  , are exam-
ined in practice to model the channel-induced physical layer dynamics. For example, 
the Fisher-Snedecor F  fading model was proposed in [95] to characterize D2D com-
munications, where its simplicity and feasibility are compared with the generalized-K 
fading model. Similarly, the Gamma-Gamma, mixed η − µ and Málaga, and Málaga 
distributions were shown feasible to accurately model the RF-FSO links, and the secu-
rity performance analysis of RF-FSO systems over these fading models are explored in 
[73–76, 96]. To encompass more special models in one distribution, one can find that 
[62, 64, 65], respectively, analyzed the security performance metrics over α − η − µ , 
α − κ − µ , and α − η − κ − µ fading models. For instance, the α − η − κ − µ model 
can be reduced to the Rayleigh, Nakagami-m, Rician, κ − µ , η − µ , α − µ , etc. Those 
models are highly valuable and flexible. However, its complex mathematical repre-
sentation of characteristics makes it difficult to derive the exact closed-form security 
metrics.

4.1.4 � Cascaded fading channels

Cascaded fading models were found feasible to characterize the multi-hop non-
regenerative amplify-and-forward (AF) relaying with fixed gain, the propagation in 
the presence of keyholes, the keyhole/pinhole phenomena in MIMO systems, and the 
reconfigurable intelligent surface (RIS)-aided wireless systems [97–99]. Yang et  al. 
[97] modeled the RIS-aided main link as a multiplication of two Rayleigh distributed 
random variables. For vehicular networks, Ai et al. [58] considered the double Ray-
leigh fading channels and analyzed the ASC metric. Regarding other works over cas-
caded Nakagami-m, cascaded Fisher-Snedecor F  , and cascaded α − µ wiretap fading 
channels, readers can refer to [58–61, 87, 100]. As discussed earlier, the cascaded 
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α − µ fading channel similarly includes the cascaded Rayleigh, cascaded Nakagami-
m, cascaded Weibull, and cascaded Gamma distributions. The authors of [60] stud-
ied the SOP, PNZ, and ASC performances with closed-form expressions, which are 
given in terms of Fox’s H-function. The obtained results therein are identical to the 
exact analytical representations given in [87, 100]. In [61], Tashman et al. considered 
multiple eavesdroppers and investigated the SOP and PNZ metrics with closed-form 
expressions over cascaded κ − µ wiretap fading channels.

As shown in Table  2, the existing research works focusing on analyzing security 
performance metrics over wiretap fading channels are summarized and their contri-
butions are highlighted.

Table 2  Major information-theoretic secrecy analysis works over the classic wiretap fading channels

The bold items are used to highlight the contributions of the cited works

Year References Contributions

2008 Bloch et al. [9] Derived simple and exact SOP, PNZ, and ASC closed-form 
expressions over Rayleigh fading channels

2013 Liu [32, 33] Derived the PNZ over Rician and Weibull fading channels

2014 Wang et al. [31] Derived the ASC and SOP over TWDP fading channels

2015–2018 Lei et al. [38, 40], Kong et al. [39, 41] Analyzed the SOP, lower bound of SOP, PNZ, and ASC over 
α − µ fading channels

2016 Pan et al. [37] Proposed an highly accurate approximated secrecy solution 
over lognormal fading channels

Bhargav et al. [44] Derived the lower bound of SOP and PNZ over κ − µ fading 
channels

Lei et al. [48–50] Analyzed the security metrics over generalized-K fading 
channels

2017 Saber and Sadough [74] Derived the SOP, PNZ, and ASC over the Málaga fading chan-
nels

2018 Kong and Kaddoum [53] Derived the SOP, lower bound of SOP, PNZ and ASC over 
Fisher-Snedecor F  fading channels

Kong et al. [60] Derived closed-form expressions for the SOP, PNZ, and ASC 
over cascaded α − µ fading channels

Mathur et al. [65] Derived the ASC and SOP over α − η − κ − µ fading channels

2019 Kong & Kaddoum [36] Analyzed the security metrics with the assistance of the MG 
distribution

Kong et al. [52] Analyzed the security metrics over a general and flexible Fox’s 
H-function fading channels

Moualeu et al. [62] Derived closed-form expressions of lower bound of SOP and 
their asymptotic behavior over the α − η − µ & α − κ − µ 
fading channels

Zeng et al. [79], Zhao et al. [80] Analyzed the security metrics over the FTR fading channels

2020 Kong et al. [101] Proposed a unified secrecy analysis framework with the help of 
MoG distribution

Sánchez et al. [56] Derived the closed-form expressions of SOP and ASC metrics 
over shadowed κ − µ fading channels

Sánchez et al. [66] Derived the exact and asymptotic SOP behavior over NWDP 
fading channels

Tashman et al. [61] Derived the SOP and PNZ over cascaded κ − µ fading chan-
nels

Badarneh et al. [54] Derived the ASC, PNZ, and SOP over Nakagami-m/Fisher 
Snedecor F  , Fisher Snedecor F /Nakagami-m, and 
Nakagami-m/Nakagami-m fading channels

2021 Ai et al. [78] Derived the SOP and PNZ over correlated Málaga fading 
channels
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4.2 � Generic secrecy analysis tools

With the above in mind and under the assumption that the main and wiretap channels 
undergo independent fading conditions, this subsection will present three useful and 
flexible distributions, which can largely encompass the aforementioned fading channel 
models by properly attributing their parameters. It is proved in literature that they are 
general and advantageous to assist the theoretical analysis of security metrics.

4.2.1 � Mixture Gamma (MG) distribution

According to [102, 103], the instantaneous received SNR γ over wireless Rayleigh, Nak-
agami-m, NL, κ − µ , Hoyt, η − µ , Rician, K , KG , κ − µ/Gamma, η − µ/Gamma, and 
α − µ/Gamma fading channels can be reformulated using the MG distribution, whereas 
the PDF and CDF of the instantaneous received SNR γ are denoted as f (γ ) and F(γ ) and 
given by

where L is the number of terms in the mixture, while αl ,βl , and ζl are the parameters of 
the lth Gamma component. ϒ(·, ·) is the lower incomplete Gamma function.

Lei et  al. [49] used the MG distribution to assist the information-theoretic security 
performance analysis over wiretap generalized-K fading channels. Motivated by [36], the 
security metrics over the FTR and Málaga turbulence fading channels [74, 79] can be 
similarly derived using the MG distribution.

4.2.2 � Mixture of Gaussian (MoG) distribution

Based on the unsupervised expectation-maximization (EM) learning algorithm, the 
MoG distribution is essentially beneficial when the characteristics of fading channels 
are unavailable. In [104], the authors modeled the RL, NL, η − µ , κ − µ , and shadowed 
κ − µ fading channels using the MoG distribution. The findings of [104] showcase that 
the MoG distribution is, especially advantageous to approximate any arbitrarily shaped 
non-Gaussian density and can accurately model both composite and non-composite 
channels in a simple expression.

Assuming the instantaneous SNR γ follows the MoG distribution, its PDF and CDF 
are given by

(8)f (γ ) =
L∑

l=1

αlγ
βl−1 exp(−ζlγ ),

(9)F(γ ) =
L∑

l=1

αlζ
−βl
l ϒ(βl , ζlγ ),

(10)f (γ ) =
C∑

l=1

wl√
8πγ̄ ηl

√
γ
exp

(

− (
√
γ /γ̄ − µl)

2

2η2l

)

,

(11)F(γ ) =
C∑

l=1

wl�

(√
γ /γ̄ − µl

ηl

)

,
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where C represents the number of Gaussian components. wl > 0 , µl , and ηl are the lth 
mixture component’s weight, mean, and variance with 

∑C
l wl = 1 , �(x) is the CDF of 

the standard normal distribution.

4.2.3 � Fox’s H‑function distribution

For known fading characteristics, the Fox’s H-function distribution is a general and flex-
ible tool. It is reported in [52, 105–107] that many well-known distributions in the litera-
ture, e.g., Rayleigh, Exponential, Nakagami-m, Weibull, α − µ , Gamma, Fisher-Snedecor 
F  , Chi-square, cascaded Rayleigh/Nakagami-m/α − µ , Gamma-Gamma, Málaga, KG , 
EGK, etc., can be represented using Fox’s H-function distribution. Interested readers are 
suggested to refer to Table 3.

Assuming γ  follows Fox’s H-function distribution, its PDF and CDF are given by

(12)f (γ ) = KHm,n
p,q

[

Cγ

∣
∣
∣
∣

(aτ + Aτ ,Aτ )τ=1:p
(bς + Bς ,Bς )ς=1:q

]

,

(13)F(γ ) = K

C
Hm,n+1
p+1,q+1

[

Cγ

∣
∣
∣
∣

(1, 1), (aτ + Aτ ,Aτ )τ=1:p
(bς + Bς ,Bς )ς=1:q , (0, 1)

]

,

Table 3  Fox’s H-equivalents of typical and generalized statistical models for instantaneous received 
SNR γi , i ∈ {B, E} , and γ̄i is the average SNR

 Model K  � m n a b

p q A B

Rayleigh 1
γ̄i

1
γ̄i

1 0 – 0

0 1 – 1

Nakagami m

Ŵ(m)γ̄i

m

γ̄i
1 0 – m− 1

0 1 – 1

Weibull  
Ŵ(1+ 2

α
)

γ̄i

Ŵ(1+ 2
α
)

γ̄i

1 0 – 1− 2
α

0 1 – 2
α

α-µ
 
Ŵ(µ+ 2

α
)

Ŵ(µ)2 γ̄i

Ŵ(µ+ 2
α
)

Ŵ(µ)γ̄i

1 0 – µ− 2
α

0 1 – 2
α

Maxswell  3√
πγ̄i

3
2γ̄i

1 0 – 1
2

0 1 – 1

N∗(α-µ) N∏

i=1

Ŵ(µi+ 2
αi
)

Ŵ(µi )
2 γ̄i  

N∏

i=1

Ŵ(µi+ 2
αi
)

Ŵ(µi )γ̄i

N 0 – (µ1 − 2
α1
, · · · ,µN − 2

αN
)

0 N – ( 2
α1
, · · · , 2

αN
)

Fisher-Snedecor F m

ms γ̄iŴ(m)Ŵ(ms)
 m

ms γ̄i
1 1 −ms 1

1 1 m− 1 1

Generalized-K mlmsl

Ŵ(ml )Ŵ(msl )γ̄i

m1m2

γ̄i
2 0 – (ml − 1,ms1 − 1)

0 2 – (1, 1)

EGK Ŵ(m+ 1
ξ
)Ŵ(ms+ 1

ξs
)

γ̄iŴ(m)2Ŵ(ms)2

Ŵ(m+ 1
ξ
)Ŵ(ms+ 1

ξs
)

γ̄iŴ(m)Ŵ(ms)

2 0 – (m− 1
ξ
,ms − 1

ξs
)

0 2 – ( 1
ξ
, 1
ξs
)
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Fig. 2  Illustration of Pnz versus γ̄B
γ̄E

 using the MG, MoG, and Fox’s H-function distributions when γ̄E = 0 dB, a 
the main channel undergoes KG ( mB = 2.5, kB = 4 ) fading while the wiretap channel experiences KG , Rician, 
Hoyt, Rayleigh, and Nakagami-m ( m = 3.5 ) fading; b the main and wiretap channels undergo same fading 
while using the MoG distribution; and c the main and wiretap channels undergo same fading while using the 
Fox’s H-function distribution
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where Hm,n
p,q [.] is the univariate Fox’s H-function [108, Eq. (8.4.3.1)], K > 0 and C are 

constants such that 
∫∞
0 f (γ )dγ = 1 . Ai > 0 for i = 1, · · · , p , Bl > 0 for l = 1, · · · , q , 

0 ≤ m ≤ q , and 0 ≤ n ≤ p . For notational convenience, let a = (a1, · · · , ap) , 
A = (A1, · · · ,Ap) , b = (b1, · · · , bq) , and B = (B1, · · · ,Bq) . Thus, hereafter the Fox’s 
H-function is denoted as Hm,n

p,q (K, C, a,A , b,B ).
To compare the security performance analysis using the three aforementioned 

approaches, the PNZ metric is taken as an example. Provided that the main and 
wiretap links undergo the same fading conditions, the PNZ expressions are derived 
in terms of the Gauss Hypergeometric function [36, Eq. (7)], error function [101, Eq. 
(9)], and Fox’s H-function [52, Eq. (16)]. In Fig. 2, we plotted the PNZ performance 
versus γ̄B for different fading channel models. Their tightness and accuracy have 
already been individually presented and confirmed in [36, 52, 101].

Remark  Conclusively speaking, the MG, MoG, and Fox’s H-function distributions have 
demonstrated their feasibility and applicability when analyzing security performance 
metrics. They all are valid when the main channel and wiretap channel are subjected to 
different wireless fading channels. Their advantages and limitations are listed in Table 4.

Note that the three aforesaid solutions are unfeasible when the main and wiretap 
channels are correlated.

4.3 � Outdated and imperfect and correlated CSI

The aforementioned works mainly focus on the scenario that perfect CSI is available at 
all parties. Such an assumption is unrealistic in practice, since outdated CSI and imper-
fect CSI are the general cases due to the time varying nature of wireless channels and 
channel estimation errors.

In [109], the effects of outdated CSI on security performance were investigated over 
multiple-input single-output (MISO) systems when the transmit antenna selection 
(TAS) scheme is applied at Alice. The obtained analytical results show that the diver-
sity gain of using multiple antenna techniques cannot be achieved when the CSI is out-
dated during the TAS process. Later on in [110], Hu et  al. adopted the on-off-based 
transmission scheme at Alice to efficiently take advantage of the useful information in 
the outdated CSI. Alice does transmission only when she has a better link to Bob com-
pared with that to Eve. Perfect knowledge of the main and wiretap channel CSI are 
always favorable, but the existence of noise in the channel estimation process makes it 

Table 4  Comparisons among the MG, MoG, and Fox’s H-function distributions

Applicable scenarios Advantages Limitations

MG Exactly known fading models Highly accurate solutions with simple 
expressions

Accuracy depends on L

MoG Unavailability of fading model Highly accurate approximated solution Accuracy relies on C

Fox Exactly known and transformable 
models

Exact and general solution Inflexibility to some 
composite fading 
channels
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an unrealistic assumption. The impacts of imperfect CSI have been widely explored in 
diverse research topics, e.g., imperfect CSI in the AN-assisted training and communica-
tions [111], imperfect CSI with an active full-duplex eavesdropper [112], imperfect CSI 
in a mixed RF/FSO system [55], etc.

Apart from the above two scenarios, the correlation between the main channel and 
wiretap channel also attracts a growing body of research interests. Channel correlation 
at the physical layer is often observed, which is mainly caused by the antenna deploy-
ments (e.g., insufficient antenna spacing in small mobile units equipped with space and 
polarization antenna diversity), proximity of the legitimate and illegitimate receivers, 
and random scatters around them [69]. The correlation is mathematically modeled with 
the correlated wiretap fading channel models. For example, Jeon et al. in [69] used the 
correlated Rayleigh fading wiretap channel and explored the secrecy capacity bounds. 
The results quantitatively showcased how much of secrecy capacity is lost due to chan-
nel correlation. In continuation of this work, the security performance analysis over 
correlated Nakagami-m, correlated α − µ , correlated shadowed κ − µ , and correlated 
Málaga fading channels are explored in [71, 72, 78, 113].

5 � Secrecy enhancement approaches
The essence of PLS is to utilize the impairments (e.g., fading, noise, interference, and 
path diversity) of wireless channels to enhance security. In this section, we mainly 
focus on comparing the existing secrecy enhancement techniques suitable for wiretap 
channels.

5.1 � On‑off transmission scheme

Consider the imperfect channel estimation, He and Zhou in [89] first proposed the on-
off transmission scheme to improve the reliability and security performance. The prin-
ciple of on-off transmission lies in the comparison between the estimated instantaneous 
SNRs at Bob and Eve, i.e., γ̂B and γ̂E , and two given corresponding thresholds i.e., µB 
and µE . More specifically, only when the condition γ̂B ≥ µB and γ̂E ≤ µE meet, the ‘on’ 
mode at Alice is then activated, otherwise, Alice is in ‘off’ mode. The on-off transmission 
scheme is an appealing enabler to allow the SOP metric to be arbitrarily small. Building 
on He’s work, the on-off transmission is thereafter widely investigated in the following 
works [110, 114–116], where the imperfect CSI, outdated CSI, and correlated CSI are 
considered.

5.2 � Jamming approach

Assuming the transmitter has more antennas than the eavesdropper, Goel and Negi 
proposed the concept of artificial noise (AN) [117]. The principle of AN lies in that 
the transmitter allocates some of its available power to generate AN to confuse passive 
eavesdroppers. Similarly, Wang et  al. in [118] proposed the artificial fast fading (AFF) 
secrecy enhancement scheme, where the randomized beamforming is employed at the 
transmitter to ‘upgrade’ the main channel to an AWGN one and degrade the wiretap 
channel to a fast fading channel.

Unlike the aforesaid transmitting beamforming-based techniques, i.e., AN and AFF, 
the quality of the wiretap link is further degraded by allocating part of the transmitting 
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resources (i.e., power or antennas) at the transmitter, specifically to Eve. Based on the 
survey papers [3, 19], one can conclude that jamming is a useful means to enhance the 
PLS. Considering the three-node wiretap fading channel, jamming can be alternatively 
realized by a full-duplex Bob, where Bob would receive signals from Alice and send jam-
ming signals (e.g., noise) to Eve in order to reduce Eve’s received SNR’s quality [119]. 
Bob and Eve usually only act purely as a legitimate receiver or an illegitimate evil eaves-
dropper. However, in practice, they might behave with multiple roles. For instance, in 
[112], an active eavesdropper operates in full-duplex mode so that it can send jamming 
signals to degrade the legitimate receiver’s SNR, while in [120, 121], an untrustworthy 
relay works as a relay and eavesdropper simultaneously in a bidirectional cooperative 
network.

5.3 � Antenna selection technique

In multiple-antenna systems, TAS is seen as an effective way for reducing hardware 
complexity while boosting diversity benefits. In [113, 116, 122–127], TAS is deployed 
as a secrecy enhancement solution in MIMO systems. There exist three kinds of TAS 
schemes, i.e., (i) the antenna that maximizes the instantaneous output SNR at Bob is 
selected (see [122, 123]); (ii) more than one single antenna are selected (see [124]); 
and (iii) a general order of antenna is selected (see [126]).

Unlike the works [122–125] assuming that the multi-antenna channels are inde-
pendent, quite recently, Si et  al. consider antenna correlation in [116], where the 
exact and asymptotic SOP are derived with consideration of three diversity combin-
ing schemes, namely maximal ratio combining (MRC), selection combining (SC), and 
equal gain combining (EGC) at Bob. This work is extended in [113], where the authors 
continuously consider the joint antenna and channel correlation, while the relation-
ship between the correlation and the SOP is analytically established.

5.4 � Protected zones

Protected zones (equivalently, secrecy region) mean a geometrical region (see [91, 
128]), defined as the legitimate receiver’s locations having a certain guaranteed level 
of secrecy, or an area where the set of ordered nodes can safely communicate with 
typical destination, for a given secrecy outage constraint [42, 129].

6 � Concluding remarks
In this paper, we have comprehensively reviewed the development of PLS over various 
wiretap fading channels. Based on the characteristics of wireless channels, research 
works focusing on investigating security performance metrics are thereafter classified 
into four categories: (i) small-scale fading; (ii) large-scale fading; (iii) cascaded fad-
ing; and (iv) composite fading models. After comparing some significant existing and 
ongoing research works, we introduced three valuable and practical approaches, i.e., 
the MG, MoG, and Fox’s H-function distributions, to simplify the analysis of security 
performance metrics. The three approaches are highly beneficial and advantageous 
since they can broadly encompass the existing fading models. Besides, we discussed 
four secrecy enhancement techniques deployed on Wyner’s wiretap channel model, 
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including on-off transmission, jamming approach, TAS technique, and protected 
zones. Hopefully, this paper can serve as a valuable reference for interested readers on 
better understanding the physical layer security over wiretap fading channels.
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