• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Personalized Online Federated Learning for IoT/CPS: Challenges and Future Directions

Gogineni, Vinay Chakravarthi; Werner, Stefan; Gauthier, Francois; Huang, Yih-Fang; Kuh, Anthony
Journal article
Accepted version
Thumbnail
Åpne
IoTMag_2022_aa.pdf (6.149Mb)
Permanent lenke
https://hdl.handle.net/11250/3037648
Utgivelsesdato
2022
Metadata
Vis full innførsel
Samlinger
  • Institutt for elektroniske systemer [2487]
  • Publikasjoner fra CRIStin - NTNU [41874]
Sammendrag
In recent years, federated learning (FL) has emerged as a powerful paradigm for distributed learning thanks to its privacy-preserving capabilities. With the use of FL, a network of edge devices can make intelligent decisions without exposing their data to others. Despite its success, the traditional FL is not well suited to many practical applications such as those that involve the internet-of-things (IoT) or cyber-physical systems (CPS), where data access can be intermittent, and edge devices are semi-independent with device-specific dynamic behavior characteristics. Those devices are referred to here as semiindependent devices since they need to make decisions based on their own data and device characteristics, often independent of other devices and the information obtained from other devices in the network. Additionally, as new information becomes available, traditional FL must repeat the entire learning process and may not be able to provide timely and tailored solutions to participants. Personalized online FL, on the other hand, retains the collaborative and privacy-preserving aspects while learning in real time from intermittent data. It further enables devices to learn models customized to the device and the specific tasks it performs. In light of these reasons, personalized Online-FL is ideal for applications where the learning relies on heterogeneous data streams, and local optimization is beneficial. In this work, we want to bring attention to this new learning paradigm, present a few of the applications that could benefit from it, and highlight the principal challenges the research community faces in developing successful personalized Online-FL.
Utgiver
IEEE
Tidsskrift
IEEE Internet of Things Magazine (IoT)
Opphavsrett
© IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit