Show simple item record

dc.contributor.authorde León-Contreras, Marta
dc.contributor.authorPerfekt, Karl-Mikael
dc.date.accessioned2022-11-21T08:43:41Z
dc.date.available2022-11-21T08:43:41Z
dc.date.created2022-10-26T15:54:57Z
dc.date.issued2022
dc.identifier.citationMathematische Annalen. 2022, .en_US
dc.identifier.issn0025-5831
dc.identifier.urihttps://hdl.handle.net/11250/3033044
dc.description.abstractWe characterize the essential spectrum of the plasmonic problem for polyhedra in R3. The description is particularly simple for convex polyhedra and permittivities ϵ<−1. The plasmonic problem is interpreted as a spectral problem through a boundary integral operator, the direct value of the double layer potential, also known as the Neumann–Poincaré operator. We therefore study the spectral structure of the double layer potential for polyhedral cones and polyhedra.en_US
dc.language.isoengen_US
dc.publisherSpringer Natureen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleThe quasi-static plasmonic problem for polyhedraen_US
dc.title.alternativeThe quasi-static plasmonic problem for polyhedraen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.journalMathematische Annalenen_US
dc.identifier.doi10.1007/s00208-022-02481-x
dc.identifier.cristin2065346
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode2


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Navngivelse 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Navngivelse 4.0 Internasjonal