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Abstract
We characterize the essential spectrum of the plasmonic problem for polyhedra inR3.
The description is particularly simple for convex polyhedra and permittivities ε <

−1. The plasmonic problem is interpreted as a spectral problem through a boundary
integral operator, the direct value of the double layer potential, also known as the
Neumann–Poincaré operator. We therefore study the spectral structure of the double
layer potential for polyhedral cones and polyhedra.

1 Introduction

1.1 Background

Let � ⊂ R
3 be an open simply connected bounded polyhedron (with flat faces and

straight edges), understood as an inclusion into infinite space with relative permittivity
ε ∈ C, Re ε < 0. For a given function (or distribution) g on ∂�, the quasi-static
plasmonic problem seeks a potential U : R3 → C,

U (x) = o(1), |x | → ∞,

which is harmonic in � and its exterior,

�U (x) = 0, x ∈ R
3\∂�,

and satisfies
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Tr+U = Tr−U , ε

(
∂

∂n
U

)
+
−
(

∂

∂n
U

)
−
= g

on ∂�. Here Tr±U and
(

∂
∂n U

)
± denote the interior/exterior traces and limiting out-

ward normal derivatives ofU on ∂�. A value of ε for which there is a non-zero solution
U of the plasmonic problem with g = 0 is a plasmonic eigenvalue; the corresponding
eigenfield ∇U is a static plasmon associated with the permittivity ε.

If� is Lipschitz and U is assumed to be of finite energy, then any plasmonic eigen-
value ε must satisfy that ε < 0, since Green’s formula implies that

∫
R3\� |∇U |2 dx =

−ε
∫
�
|∇U |2 dx . Plasmonic problems,whereRe ε < 0, appear as quasi-static approx-

imations of electrodynamical problems where the scatterer is much smaller than the
wavelength of the scattered electromagnetic wave, see [1] and [18, Sect. 8]. If instead
ε > 0, or if Im ε �= 0 and Re ε > 0, then the described problem is an ordinary elec-
trostatic or quasi-static problem, which is thoroughly studied and mostly very well
understood.

Wewill use layer potential operators to interpret and analyze the plasmonic problem
of � as a spectral problem. Given a charge u on ∂�, the corresponding single layer
potential of −� is given by

Su(x) = 1

4π

∫
∂�

S(x, y)u(y) d S(y) = 1

4π

∫
∂�

u(y)

|x − y| d S(y), x ∈ R
3,

where d S denotes the standard surface measure on ∂�. The Neumann–Poincaré oper-
ator on ∂�, the direct value of the double layer potential of u, is defined by

K u(x) =− 1

4π

∫
∂�

u(y)
∂

∂ny

1

|x − y| d S(y)

= 1

4π

∫
∂�

u(y)
(y − x) · ny

|x − y|3 d S(y), x ∈ ∂�,

where ny is the outward normal vector at (almost every) y ∈ ∂�. Inserting the ansatz

U = Su

into the plasmonic problem yields the equation

(K ∗ − λ)u = g

1− ε
, λ = ε + 1

2(ε − 1)
, (1.1)

where the adjoint K ∗ has been formed with respect to the L2(∂�)-pairing. Note that
Re ε < 0 if and only if |λ| < 1/2. For justification of the connection between the
plasmonic problem and the spectral theory of K in L p, Sobolev, and Hardy space
settings, see for example [2, 13, 19, 21]. For a treatment that includes classes of
non-Lipschitz domains, see [22].

For smooth domains, the spectrum of the plasmonic problem consists solely of
a sequence of eigenvalues, which for 3D domains is governed by a Weyl law [3,
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37]. For domains with singularities, the plasmonic problem also exhibits essential
spectrum (here interpreted via the connection with the Neumann–Poincaré operator).
To exemplify this, we recall that for a curvilinear polygon� in 2D, with interior angles
β1, . . . , βJ , the spectral picture of the analogous 2D Neumann–Poincaré operator is
very well understood [4, 6, 33, 40, 41]. As is typical for domains with singularities, the
situation is highly dependent on the choice of function space. On the Sobolev space
H1/2(∂�), the most physically meaningful choice, there is a self-adjoint realization
of K : H1/2(∂�) → H1/2(∂�), and the essential spectrum is absolutely continuous
and given by

σess

(
K , H1/2(∂�)

)
=
{

x ∈ R : |x | ≤ max
1≤ j≤J

|1− β j/π |
2

}
. (1.2)

On the other hand, the essential spectrum (in the sense of Fredholm operators) of
K : L2(∂�)→ L2(∂�) is a union of complex curves,

σess

(
K , L2(∂�)

)
=

⋃
1≤ j≤J

(�0,β j ∪�−0,β j
),

where

�0,β j =
{
1

2

sin((π − β j )(
1
2 + iξ))

sin(π( 12 + iξ))
: −∞ ≤ ξ ≤ ∞

}

and �−0,β j
= −�0,β j . Furthermore, outside the essential spectrum, the index of K −λ

is given by the winding number of λ with respect to σess
(
K , L2(∂�)

)
. The L2(∂�)-

theory can be understood through the lens of Mellin pseudodifferential operators,
which we will briefly explain in Sect. 2.7. Other types of singularities in 2D have also
been considered [7]. Much less is known for 3D domains, but analogous results for
smooth conical singularities have been considered in [5] and [20], and for edges in
[39]. The plasmonic problem has also been investigated numerically for some regular
polyhedra [19, 48].

For polyhedra � ⊂ R
3, the study of the (essential) spectral radius of K : X → X

and the invertibility of K + 1/2 : X → X is a topic of very rich history; a vast variety
of function spaces X on ∂� have been considered. The invertibility of K+1/2 reflects
the possibility of solving the Dirichlet problem in � with boundary data from X . We
refer to [51] for an extensive survey, choosing here to only summarize the state of the
art as it relates to the plasmonic problem.

Rathsfeld [43] proved that K+1/2 (appropriatelymodified at the edges) is invertible
on the spaceC(∂�) of continuous functions on ∂�, for arbitrary polyhedra�. To prove
his result, Rathsfeld estimated the spectral radius on polyhedral cones using Mellin
techniques – note well the important correction that was made to this analysis in [44].
Elschner [12] refined the analysis further and proved that the essential spectral radius of
K is less than 1/2 for a range of weighted Sobolev spaces on Lipschitz polyhedra ∂�;
in Lemma 4.12 we will recall some important details of Elschner’s study. Grachev
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and Maz’ya independently obtained the same result as Rathsfeld, and additionally
established the invertibility of K +1/2 on weighted L p-spaces for general polyhedra,
see [15, 30]. The Mellin techniques of [12, 43] were adapted to the study of other
layer potential operators in [32]. However, it appears that the reasoning in the proof
of [32, Theorem 5] suffers from the same type of flaw as that of [43, Lemma 1.5], cf.
Theorem 4.17 and Remark 4.19. In [32] it was also proven that the essential spectral
radius of K : L2(∂�)→ L2(∂�) is less than 1/2 if � has sufficiently small Lipschitz
character; the spectral radius conjecture asks if this is true for all Lipschitz domains.
The spectral radius conjecture is known to be true on the Sobolev space H1/2(∂�) [9,
49].

1.2 Results

The main purpose of this article is to describe the essential spectrum of K :
H1/2(∂�) → H1/2(∂�), or, equivalently, of K ∗ : H−1/2(∂�) → H−1/2(∂�),
for Lipschitz polyhedra �. Note that in the layer potential formulation (1.1) of the
plasmonic problem, charges u ∈ H−1/2(∂�) correspond to potentials U = Su
with finite energy,

∫
R3 |∇U |2 dx < ∞. We will also investigate the spectra of

K : L2
α(∂�) → L2

α(∂�) for certain weighted L2-spaces, L2
α(∂�). Our results in

this latter setting will serve as crucial tools for our study in H1/2(∂�), but we also
believe that they are of some independent interest. All of our results in the L2

α(∂�)-
context are valid for arbitrary polyhedra, including non-Lipschitz polyhedra such as
the interior of

([0, 1] × [0, 1] × [0, 2]) ∪ ([1, 2] × [0, 2] × [0, 1]),
which is a variant of the so-called “two brick” domain. To understand general bounded
polyhedra, we first analyze the Neumann–Poincaré operator K for polyhedral cones
� which locally coincide with ∂� around vertices. Assuming that � has its vertex at
the origin, we consider as in Figure 1 the spherical polygon

γ = � ∩ S2,

where S2 denotes the two-dimensional unit sphere. In this case, K is a Mellin operator
with an operator-valued convolution kernel [42], and this leads us to consider the (direct
value of the) double layer potential operator H(iξ) on γ , ξ ∈ R, formed with respect
to the fundamental solution for−�S2 +1/4+ ξ2, where �S2 is the Laplace–Beltrami
operator of S2 – see Sect. 3.

In Theorem 5.27 and Lemma 4.13, we will describe the spectra of
H(iξ) : H1/2(γ )→ H1/2(γ ) and H(iξ) : L2

α(γ )→ L2
α(γ ), 0 ≤ α < 1, where

L2
α(γ ) = L2(γ, q−α dω),

dω denoting the arc length measure on γ and q(ω) a quantity comparable to the
distance from ω ∈ γ to the corners of γ . In particular, the essential spectrum in the
former case is given by
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Fig. 1 An illustration of a
polyhedral cone � and the
corresponding spherical polygon
γ

σess

(
H(iξ), H1/2(γ )

)
=
{

x ∈ R : |x | ≤ max
1≤ j≤J

|1− β j/π |
2

}
,

where β1, . . . , βJ denotes the internal angles of γ , cf. (1.2). The remaining part of the
spectrum σ

(
H(iξ), H1/2(γ )

)
consists of real eigenvalues. Let

�∗ = {λ : λ is an isolated eigenvalue of H(z) : H1/2(γ )

→ H1/2(γ ), for someRe z = 0}.

Similarly, for 0 ≤ α < 1 we introduce

�α = {λ : λ is an isolated eigenvalue of H(z) : L2
α(γ )→L2

α(γ ), for someRe z=0}.

It turns out that both of these sets are real, and that they can be equivalently formed by
considering isolated eigenvalues of the L2(γ )-adjoint operators H∗(z) : H−1/2(γ )→
H−1/2(γ ) and H∗(z) : L2−α(γ ) → L2−α(γ ), respectively. It is an important observa-
tion that eigenfunctions to eigenvalues λ of H∗(iξ) correspond to potentials U on S2

such that

(−�S2 + 1/4+ ξ2)U (ω) = 0, ω ∈ S2\γ,
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and

Tr+U = Tr−U , ε

(
∂

∂n
U

)
+
=
(

∂

∂n
U

)
−

on γ , where λ and ε are related as in (1.1), see Lemma 3.10.
Before we can discuss our main results, we need to introduce some additional

notation. For Lipschitz polyhedral cones �, we introduce, following [39, Sect. 4],
E(�) as a space of distributions on � with norm given by

‖ f ‖2E(�) = 〈S f , f 〉L2(�).

By results of [39], E(�) is isomorphic to the L2(�)-dual of the homogeneous Sobolev
space Ḣ1/2(�). We will see that K ∗ : E(�) → E(�) is self-adjoint, and that E(�)

is the correct space to consider for localization to H−1/2(∂�). We let �̂ denote the
interior of � (which coincides locally with� around vertices), and we understand that
[c, d) = (c, d] = ∅ if c > d. Let j = j∗ be the index which maximizes |1− β j/π |.
Theorem Let K be the Neumann–Poincaré operator of a Lipschitz polyhedral cone
�. Then

σ(K ∗, E(�)) = σess(K ∗, E(�)) =
[
−|1− β j∗/π |

2
,
|1− β j∗/π |

2

]
∪�∗.

Furthermore, there are two numbers 0 ≤ μ± < 1/2 such that

�∗ =
[
−μ−,−|1− β j∗/π |

2

)
∪
( |1− β j∗/π |

2
, μ+

]
.

If �̂ is convex, then μ− ≤ μ+ and

μ+ = max σ(H(0), H1/2(γ )) = max σ(H∗(0), H−1/2(γ )).

Loosely speaking, it is the edges of � which give rise to the subinterval

[
−|1− β j∗/π |

2
,
|1− β j∗/π |

2

]
⊂ σess(K ∗, E(�)),

cf. [39]. When �̂ is not convex, it can happen that μ− > |1 − β j∗/π |/2, as can be
seen by employing the idea of the proof of Theorem 5.30. In the convex case, the role
of μ− is rather mysterious, and we do not know whether it might actually be the case
that μ− = 0.

We will prove a similar result for L2
α(�) = L2(R+, dr) ⊗ L2

α(γ ), 0 ≤ α < 1. In
fact, our study of K : L2

α(�)→ L2
α(�) will inform our study of K ∗ : E(�)→ E(�).
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In particular, we will show that

�∗ =
⋃

0≤α<1

�α,

and an associated regularity result: if g ∈ H−1/2(γ ) is an eigenvector to an eigenvalue
λ of H∗(iξ) with |λ| > |1 − β j∗/π |/2, H∗(iξ)g = λg, then g ∈ L2−α(γ ) for suffi-
ciently large α < 1. However, in this weighted L2-setting, the set σ(K , L2

α(�))\�α

also contains complex points, which we are only able to partially describe. We there-
fore defer precise statements to Theorems 4.17 and 4.18.

One approach to the localization to ∂� is via the machinery of b-calculus [17, 31,
47], which relies on the construction of appropriate algebras of pseudo-differential
operators. It may be possible to treat curvilinear polyhedra using such techniques.
However, we shall take an alternative, rather direct approach to localization, staying
within our scope of polyhedral domains (with flat faces). In one direction, we will
construct Weyl sequences on ∂� in a procedure that seems applicable to a wider range
of problems.Wewill prove complete localization results for both L2

α(∂�), 0 ≤ α < 1,
and H1/2(∂�), where L2

α(∂�) is defined in analogy with L2
α(�). We have chosen to

state the result only in the case of H1/2(∂�) here, deferring the remaining statement
to Theorem 4.21.

Theorem Let K be the Neumann–Poincaré operator of a Lipschitz polyhedron ∂�. For
each vertex of ∂�, let Ki denote the Neumann–Poincaré operator of the corresponding
tangent polyhedral cone �i , i = 1, . . . , I . Then, for λ ∈ C, K − λ is Fredholm on
H1/2(∂�) if and only if K ∗i −λ is invertible on E(�i ) for every i = 1, . . . , I . That is,

σess(K , H1/2(∂�)) =
⋃

1≤i≤I

σ(K ∗i , E(�i )).

As in the definition of E(�), it is via the single layer potential possible to endow
H−1/2(∂�) with a scalar product that makes K ∗ : H−1/2(∂�)→ H−1/2(∂�) into a
self-adjoint operator, see Sect. 2.3. Therefore the remaining non-essential spectrum
of K : H1/2(∂�) → H1/2(∂�) consists of a sequence of isolated eigenvalues. Typ-
ically, eigenvalues can appear in the localization of operators, see [27] for a relevant
illustration. However, we are not aware of any specific examples relevant to our setting.

Our description of σess(K , H1/2(∂�))∩R+ is particularly simple for convex poly-
hedra, since one only needs to consider the double layer potential of −�S2 + 1/4
to compute this interval. Note that spectral parameters λ ∈ (0, 1/2) correspond to
permittivities satisfying ε < −1; in [18, Sect. 8], it is suggested that ε < −1 is likely
to be a necessary condition for the existence of surface plasmon waves on ∂�. Finally,
we remark that the plasmonic problem for a cube is of importance to nanoplasmonics
[14, 16, 19, 25, 45]. The numerics of [19] suggest that

μ− = 0, μ+ ≈ 0.34726

when �̂ is an octant of R3.
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1.3 Organization

In Sect. 2 we define the function spaces alreadymentioned, we recall some elements of
Fredholm theory and extrapolation of compact operators, and we discuss Mellin oper-
ators with operator-valued convolution kernels. In Sect. 3 we examine the relationship
between the Neumann–Poincaré operator on a polyhedral cone � and the double layer
potential operators H(z) on the associated spherical polygon γ . Section 4 contains all
of our theory concerning L2

α(∂�), while Sect. 5 treats the energy space case.

2 Notation and preliminaries

2.1 Polyhedral cones 0

Throughout the paper, � will denote a simply connected bounded polyhedron with
straight faces. The localization of K to a corner of ∂� leads us to consider integral
operators on the boundary � of an infinite polyhedral cone �̂ which locally coincides
with �. Without loss of generality, we may assume that � has its vertex at the origin.
The faces of � are open plane sectors Fj , j = 1, . . . , J ; the edges of � are denoted
by υ j .

We shall denote by γ the intersection of � with the two-dimensional unit sphere
S2. That is, γ is a spherical polygon consisting of the circular arcs γ j = S2 ∩ Fj and
the corner points E j = υ j ∩ S2, j = 1, . . . , J . Let γ̂ = S2 ∩ �̂. Then ∂γ̂ = γ and
�̂ = R+γ̂ is the polyhedral cone with base γ̂ .

Let C∞arc(γ ) be the set of all Lipschitz continuous functions on γ whose restric-
tions to γ j belong to C∞(γ̄ j ), j = 1, . . . , J . In the vicinity of each corner E j , we
parametrize the adjacent arcs γ j−1 and γ j by the arc lengths s = s j−1 and s = s j from
E j . We fix a function q ∈ C∞arc(γ ) such that q(ω) = s forω = ω(s) in a neighborhood
of each corner E j , non-vanishing except at corner points. For α ∈ R, we let

L2
α(γ ) = L2(γ, q−α dω) =

{
f :
∫

γ

| f |2q−α dω <∞
}

,

where dω denotes the arc length measure on γ , and

L2
α(�) = L2(R+, dr)⊗ L2

α(γ ) = L2(R+ × γ, q−α dr dω).

Note that the usual L2-space L2(�) coincides with L2(R+, r dr)⊗ L2
0(γ ).

2.2 Weighted L2-spaces on@Ä

Throughout, ∂� will denote the boundary of the simply connected bounded polyhe-
dron � ⊂ R

3 with vertices Ẽi , i = 1, . . . , I and faces F̃j , j = 1, . . . , J . For each
i = 1, . . . , I , let �i be the tangent polyhedral cone to ∂� at the corner Ẽi . We define
C∞face(∂�) as the space of Lipschitz continuous functions on ∂� that are C∞ on the
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closure of each face F̃j . By a compactness argument, we can choose a partition of
unity {ϕi }Ii=1 ⊂ C∞face(∂�) on ∂�, such that ϕi ≡ 1 in a neighborhood of Ẽi , ϕi ≡ 0
in a neighborhood of

⋃
j �=i Ẽ j , and suppϕi ⊂ �i . Then, given a function f on ∂�,

we can naturally understand ϕi f as a function on �i . We define, for α < 1, the space
L2

α(∂�) as the completion of C∞face(∂�) in the norm

‖ f ‖2L2
α(∂�)

=
∑

1≤i≤I

‖ϕi f ‖2L2
α(�i )

.

2.3 The energy spaces on@Ä and 0

Following an idea that dates back to Poincaré [9, 23], the energy space E(∂�) is
introduced as the Hilbert space obtained by completing L2(∂�) in the positive definite
scalar product

〈 f , g〉E(∂�) = 〈S f , g〉L2(∂�),

whereS denotes the single layer potential on ∂�.The reason for introducing the energy
space is that K ∗ : E(∂�) → E(∂�) is self-adjoint, owing to the Plemelj formula
SK ∗ = KS.

When discussing the energy space, we will for technical reasons assume that �

is Lipschitz. That is, ∂� is locally the graph of a Lipschitz function whose epigraph
locally coincides with �. Under this assumption, E(∂�) is a space of distributions on
∂� which is isomorphic to the Sobolev space H−1/2(∂�) of index −1/2 along ∂�

[49], with equivalent norms,

‖ f ‖2H−1/2(∂�)
� ‖ f ‖2E(∂�) = 〈S f , f 〉L2(∂�).

When � is a Lipschitz polyhedral cone, we similarly introduce the energy space
E(�) as the completion of the space of compactly supported L2(�)-functions in the
scalar product

〈 f , g〉E(�) = 〈S f , g〉L2(�),

where S now denotes the single layer potential on �. In this case, E(�) coincides with
the dual of the fractional homogeneous Sobolev space Ḣ1/2(�) on� [39, Theorem14].

Now let �i , i = 1, . . . , I , be the tangent polyhedral cones to ∂� at the corners of
∂�, and let {ϕi }Ii=1 be the partition of unity on ∂� described in Sect. 2.2. Then, for
f ∈ L2(∂�), suppϕi f ⊂ �i ∩ ∂�, and therefore

‖ϕi f ‖2E(�i )
= 〈S(ϕi f ), ϕi f 〉L2(�i )

= 〈S(ϕi f ), ϕi f 〉L2(∂�) = ‖ϕi f ‖2E(∂�) � ‖ϕi f ‖2H−1/2(∂�)
.
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By density and the fact that each ϕi is a multiplier of H−1/2(∂�) � E(∂�), it follows
that

‖ f ‖2E(∂�) �
∑

1≤i≤I

‖ϕi f ‖2E(�i )
, f ∈ E(∂�).

2.4 Fredholm theory

Let X and Y be Banach spaces and let T be a bounded linear operator from X to Y ,
that is, T ∈ L(X , Y ). Let α(T ) = dimKer(T ) and β(T ) = dim(Y/Ran(T )), where
Ker(T ) ⊆ X and Ran(T ) ⊆ Y denote the nullspace and the range of T , respectively.
We say that T is a Fredholm operator if Ran(T ) is closed, α(T ) <∞ and β(T ) <∞.
On the other hand, T is a upper semi-Fredholm operator if Ran(T ) is closed and
α(T ) < ∞, whereas T is a lower semi-Fredholm operator if Ran(T ) is closed and
β(T ) < ∞. If the operator T is either upper or lower semi-Fredholm, we shall say
that it is semi-Fredholm. We will now recall some elements of Fredholm theory that
will be useful for us. For a complete treatment, see [46].

The following criterion is very useful.

Proposition 2.1 Let T ∈ L(X , Y ). Then T is upper semi-Fredholm if and only if there
is a Banach space Z, a compact operator S : X → Z, and a constant C > 0 such
that

‖x‖X ≤ C‖T x‖Y + ‖Sx‖Z , ∀x ∈ X .

A fundamental quantity associated with a (semi-)Fredholm operator is its index

ind(T ) = α(T )− β(T ).

Proposition 2.2 Let X , Y be Banach spaces and T ∈ L(X , Y ) be a semi-Fredholm
operator. If K is a compact operator from X to Y , then T + K is also semi-Fredholm
and ind(T + K ) = ind(T ).

Furthermore, the composition of Fredholmoperators T and S is again Fredholm and
ind(T S) = ind(T ) + ind(S). This formula is also true for semi-Fredholm operators,
as long as the right-hand side makes sense.

For an operator T ∈ L(X) = L(X , X) we shall call

σess(T , X) := {λ ∈ C : λI − T is not Fredholm}

the essential spectrum of T . A sequence {xn}n∈N such that ‖xn‖X = 1 for all n, xn → 0
weakly in X , and ‖(T−λ)xn‖X → 0, as n →∞, is called aWeyl sequence. If {xn}n∈N
is a Weyl sequence for an operator T ∈ L(X) and λ ∈ C, then λ ∈ σess(T , X). The
converse is also true when X is a Hilbert space and T is self-adjoint.
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2.5 Extrapolation of compactness

When treating the energy space case in Sect. 5 we will sometimes rely on the extrapo-
lation result of Cwikel, [10], in order to establish the compactness of certain operators.

For a compatible couple of Hilbert spaces (A0, A1) and 0 < θ < 1, let (A0, A1)θ
denote the real interpolation space between A0 and A1. Since we are dealing with
Hilbert spaces, we will always assume that q = 2 in the real interpolation method,
omitting it from the notation. Also note that complex and real interpolation coincide
in the Hilbert space case, see [8].

Definition 2.3 (K-method). Let (A0, A1) be a compatible couple of Hilbert spaces and
0 < θ < 1. The space (A0, A1)θ consists of all f ∈ A0+ A1 for which the functional

‖ f ‖θ :=
(∫ ∞

0
(t−θ K ( f , t; A0, A1))

2 dt

t

)1/2

is finite, where

K ( f , t; A0, A1) := inf{‖ f0‖A0 + t‖ f1‖A1 : f = f0 + f1, f0 ∈ A0, f1 ∈ A1}.

We will use extrapolation in the scale of Sobolev spaces, see [34].

Proposition 2.4 Let � be a bounded Lipschitz domain, 0 < θ < 1 and 0 ≤ s0, s1 ≤ 1,
with s0 �= s1. Then

(Hs0(∂�), Hs1(∂�))θ = Hs(∂�)

(H−s0(∂�), H−s1(∂�))θ = H−s(∂�),

where s = (1− θ)s0 + θs1.

Finally, we state the extrapolation result.

Theorem 2.5 [10, Theorem1.1]. Let (A0, A1) and (B0, B1) be two compatible couples
of Banach spaces and let T : (A0, A1) → (B0, B1) be a linear operator such that
T : A0 → B0 is bounded and T : A1 → B1 is compact. Then T : (A0, A1)θ →
(B0, B1)θ is compact for every θ ∈ (0, 1).

2.6 Mellin convolution operators

Recall that the Mellin transform of a sufficiently nice function f : R+ → C is defined
by

M f (z) =
∫ ∞
0

f (t)t z dt

t
, z ∈ C.

Up to a scaling factor, the Mellin transform induces a unitary map

M : L2(R+, t2m−1dt)→ L2({Re z = m}, |dz|), m ∈ R.
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The Mellin convolution of appropriate functions f and g is given by

( f ∗ g)(s) =
∫ ∞
0

f (s/t)g(t)
dt

t
,

and

M( f ∗ g)(z) =M f (z)Mg(z).

Referring back to the notation for polyhedral cones introduced in Sect. 2.1, for a
function f on � or �̂, we shall also writeM f (z) for theMellin transform in the radial
variable,

(M f (z))(ω) =
∫ ∞
0

f (rω)r z dr

r
.

Here x = rω has been written in spherical coordinates; r = dist(0, x) and ω ∈ γ or
ω ∈ γ̂ .

We say that an operator T : C∞c (R+ × ∪γ j ) → L2
loc(�) has an operator-valued

convolution kernel T (t, ω, ω′) if T is of the form

T u(rω) =
∫
R+×γ

T (r/r ′, ω, ω′)u(r ′ω′) dω′ dr ′

r ′
.

When convergent, we shall then denote byMT (z) : C∞c (∪γ j )→ L2(γ ) the operator
given by the integral kernel

(MT (z))(ω, ω′) =
∫ ∞
0

T (t, ω, ω′)t z dt

t
.

We also make use of the analogous terminology and notation for operators
T : C∞c (�̂)→ L2

loc(�̂).
Consider the multiplication operator Mr1/2 defined by

Mr1/2 f (rω) = r1/2 f (rω).

Observe that if T is a Mellin convolution operator with kernel T (t, ω, ω′), then
Mr1/2T Mr−1/2 is also aMellin convolution operatorwith kernel t1/2T (t, ω, ω′). There-
fore, at least formally,

M(Mr1/2T Mr−1/2 f )(z) =M(Mr1/2T Mr−1/2)(z)M f (z) =MT (z + 1/2)M f (z).

Furthermore,

MMr1/2 : L2
α(�)→ L2({Re z = 0}, |dz|)⊗ L2

α(γ ) (2.3)
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is unitary up to a scaling factor, where, for sufficiently nice f ∈ L2
α(�) and Re z = 0,

(MMr1/2 f (z))(ω) =
∫ ∞
0

t1/2 f (tω)t z dt

t
= (M f (z + 1/2))(ω).

Let α < 1. Via (2.3), any Mellin convolution operator that extends to a bounded
operator T : L2

α(�)→ L2
α(�) is therefore unitarily equivalent to

I ⊗MT (iξ + 1/2) : L2(R, dξ)⊗ L2
α(γ )→ L2(R, dξ)⊗ L2

α(γ ).

With this in mind, we record the following elementary lemma for future use. We
provide a proof to preserve the concrete presentation pursued in this section.

Lemma 2.6 Let H be a separable Hilbert space and let {A(ξ)}ξ∈R be a strongly
measurable family of operators A(ξ) : H→ H such that supξ ‖A(ξ)‖ <∞. Then

I ⊗ A(ξ) : L2(R, dξ)⊗H→ L2(R, dξ)⊗H

defines a bounded operator, and

‖I ⊗ A(ξ)‖ ≤ sup
ξ∈R
‖A(ξ)‖.

Proof Fix orthonormal bases {e j } j and { fk}k of L2(R, dξ) andH, respectively. Then
every h ∈ L2(R, dξ) ⊗ H can be written h = ∑

j,k a j,ke j ⊗ fk , where ‖h‖2 =∑
j,k |a j,k |2. First assume that the sum is finite. Then

‖(I ⊗ A(ξ))h‖2L2(R,dξ)⊗H =
∫
R

∥∥∥A(ξ)
(∑

j,k

a j,ke j (ξ) fk

)∥∥∥2H dξ

≤ sup
ξ∈R
‖A(ξ)‖2

∫
R

∥∥∥∑
j,k

a j,ke j (ξ) fk

∥∥∥2H dξ

= sup
ξ∈R
‖A(ξ)‖2

∫
R

∑
k

∣∣∣∑
j

a j,ke j (ξ)

∣∣∣2 dξ

= sup
ξ∈R
‖A(ξ)‖2

∑
j,k

|a j,k |2 = sup
ξ∈R
‖A(ξ)‖2‖h‖2.

The statement now follows in the usual manner, extending by density the domain of
definition of I ⊗ A(ξ) from finite sums to arbitrary h. ��

2.7 Localizations of Mellin operators

There is a well-developed theory also of pseudo-differential operators of Mellin type
[11, 28, 33]. For our purposes, we only need to apply the results for a localized
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(scalar) Mellin convolution operator. The formulation described here can be deduced
from Theorem 1 in [28] and the subsequent remark.

Suppose that T is a Mellin convolution operator

T f (s) =
∫ ∞
0

f (t)a(s/t)
dt

t
, s > 0,

with a convolution kernel a(s/t) for which there are α < 0 < β such that

sup
α≤Re z≤β

∣∣∣∣(1+ |z|)n+1
(

d

dz

)n

Ma(z)

∣∣∣∣ <∞, n = 0, 1, 2, . . .

Let ϕ ∈ C∞([0, 1]) be a cut-off function such that ϕ ≡ 1 in a neighbor-
hood of 0 and ϕ ≡ 0 in a neighborhood of 1. Then the essential spectrum of
ϕT ϕ : L2([0, 1], dt/t)→ L2([0, 1], dt/t) is given by

σess(ϕT ϕ, L2([0, 1], dt/t)) = {Ma(iξ) : −∞ ≤ ξ ≤ ∞}.

Furthermore,whenλ does not belong to this curve, then the Fredholm index ofϕT ϕ−λ

coincides with the winding number of λ with respect to the essential spectrum.

2.8 Asymptotics of certain Mellin transforms

In this subsectionwe record the asymptotics of theMellin transforms of some functions
that appear in connection with our analysis of single and double layer potentials on
polyhedral cones. Exact formulas in terms of known special functions can be deduced
from [26, p. 257, formula (9.7.5)] and [38, p. 25, formula 2.64].

For −1 ≤ a < 1 and −3/2 < Re z < 3/2, we have that

∫ ∞
0

t z+3/2

(t2 − 2at + 1)3/2
dt

t
= 1

1− a
+ O(1+ | log(1− a)|), (2.4)

where the implied constant depends on z.
For −1 ≤ a < 1 and 1 < Re z < 2, we have that

∫ ∞
0

t z−1

(t2 − 2at + 1)1/2
dt

t
= − log

(
1− a

2

)
+ O(1), (2.5)

where, again, the implied constant depends on z.
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3 TheMellin transform and layer potential operators on cones

3.1 Identification ofMK(z)

Let � be a polyhedral cone. In any study of the double layer potential on �, it is
essential to analyze the Mellin transformMK (z), as seen in [12, 42, 43]. An explicit
identification ofMK (z)wasmade byQiao andNistor [42], in terms of layer potentials
for Schrödinger operators on the spherical polygonγ .Wewill therefore recall a number
of their calculations. We remind the reader that the single layer potential of −� on �

is given by

Su(x) = 1

4π

∫
�

u(y)

|x − y| d S(y), x ∈ �,

and that the direct value of the double layer potential of u on � is defined by

K u(x) = − 1

4π

∫
�

u(y)
∂

∂ny

1

|x − y| d S(y)

= 1

4π

∫
�

u(y)
(y − x) · ny

|x − y|3 d S(y), x ∈ �,

where d S denotes the standard surface measure on � and ny is the outward normal
vector at a.e. y ∈ �.

In spherical coordinates, x = rω and y = r ′ω′, where r = dist(0, x), r ′ =
dist(0, y), and ω,ω′ ∈ γ , we have that

Su(rω) = 1

4π

∫
R+×γ

r ′

|rω − r ′ω′|u(r ′ω′) dω′dr ′

= 1

4π

∫
R+×γ

u(r ′ω′)
|(r/r ′)ω − ω′| dω′dr ′, x ∈ �,

and

K u(rω) = − 1

4π

∫
R+×γ

u(r ′ω′) rr ′ω · nω′

|rω − r ′ω′|3 dω′dr ′

= − 1

4π

∫
R+×γ

u(r ′ω′) (r/r ′)ω · nω′

|(r/r ′)ω − ω′|3 dω′ dr ′

r ′
, x ∈ �.

ThereforeS0 := Mr−1/2SMr−1/2 is aMellin convolution operatorwith operator-valued
convolution kernel

S0(t, ω, ω′) = 1

4π

1

t1/2|tω − ω′| , (3.6)
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while K is itself a Mellin convolution operator with with kernel

K (t, ω, ω′) = − 1

4π

tω · nω′

|tω − ω′|3 = −
1

4π

tω · nω′

(t2 − 2tωω′ + 1)3/2
. (3.7)

Let � : C∞c (�̂) → L2
loc(�̂) be the standard fundamental solution of −�, under-

stood as the operator defined by

�u(x) = 1

4π

∫
�̂

u(y)

|x − y| dy = 1

4π

∫
R+×γ̂

u(r ′ω′)(r ′)2

|rω − r ′ω′| d S(ω′)dr ′

= 1

4π

∫
R+×γ̂

u(r ′ω′)(r ′)2

| r
r ′ω − ω′| d S(ω′)dr ′

r ′
,

where x = rω, y = r ′ω′, ω,ω′ ∈ γ̂ , and d S is the surface measure on γ̂ . Consider
�0 = Mr−1�Mr−1 ,

�0u(x) = 1

4π

∫ ∞
0

∫
γ̂

u(r ′ω′)
r
r ′ | r

r ′ω − ω′|d S(ω′)dr ′

r ′
, u ∈ C∞c (�̂).

Then �0 is a Mellin convolution operator with kernel

�0(t, ω, ω′) = 1

4π

1

t |tω − ω′| . (3.8)

By this formula,M�0(z) : C∞c (γ̂ )→ L2
loc(γ̂ ) exists for 1 < Re z < 2, cf. (2.5), and

(M�0u)(z) =M�0(z)Mu(z), u ∈ C∞c (�̂).

On the other hand, the Laplacian in spherical coordinates is given by

� = 1

r2
((r∂r )

2 + r∂r +�γ̂ ),

where �γ̂ denotes the restriction of the Laplace–Beltrami operator �S2 to γ̂ ,

�γ̂ f (ω) = � f (x/|x |)|x=ω, ω ∈ S2.

To understand the interaction between the Laplacian and the Mellin transform, note,
for u ∈ C∞c (�̂), that

M(r∂r u)(z) = −zMu(z), (3.9)

and that the Mellin transform and the Laplace-Beltrami operator commute,

M(�γ̂ u)(z) = �γ̂Mu(z). (3.10)
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Proposition 3.7 [42] For 1 < Re z < 2, M�0(z) is the fundamental solution for
−�γ̂ + 1/4− (z − 3/2)2, restricted to γ̂ .

Proof Since −��u = u for any u ∈ C∞c (�̂), we have that

u = −Mr��Mr−1u = −Mr�Mr�0u.

Noting that Mr�Mr = (r∂r )
2 + 3r∂r + 2 +�γ̂ , we find, applying (3.9) and (3.10),

that

Mu(z) = −(z2 − 3z + 2+�γ̂ )(M�0u)(z)

= (−�γ̂ + 1/4− (z − 3/2)2)(M�0u)(z).

Since (M�0u)(z) = M�0(z)Mu(z) it follows that (the kernel of) M�0(z) is the
fundamental solution for−�γ̂+1/4−(z−3/2)2. This fundamental solution is unique,
by the positive definiteness of −�γ̂ and the fact that Re (1/4− (z − 3/2)2) > 0. ��

We now recall one of the main results of [42]. See also [43, Lemma 3.2].

Theorem 3.8 [42]. For −1/2 < Re z < 1/2, in terms of kernels, we have on γ that

MK (z + 1/2) = −∂nω′ (M�0)(z + 3/2).

That is, MK (z + 1/2) is the direct value on γ of the double layer potential operator
of −�γ̂ + 1/4− z2.

Proof For −3/2 < Re z < 3/2, by (3.7), the kernel of MK (z + 1/2) is given by

MK (z + 1/2)(ω, ω′) = − 1

4π

∫ ∞
0

t z+1/2 tω · nω′

|tω − ω′|3
dt

t
.

where ω,ω′ ∈ γ , ω �= ω′. Furthermore, for −1/2 < Re z < 1/2, by (3.8) and direct
calculations, the normal derivative of the kernel of (M�0)(z + 3/2) is given by

−∂nω′ (M�0)(z + 3/2)(ω, ω′) = −
∫ ∞
0

t z+3/2∂nω′�0(t, ω, ω′) dt

t

= − 1

4π

∫ ∞
0

t z+3/2 ω · nω′

|tω − ω′|3
dt

t
.

The result now follows from Proposition 3.7. ��

3.2 The adjoint ofMK(z) and the Kellogg argument on �

Let H(z) = MK (z + 1/2), −3/2 < Re z < 3/2, and let 0 ≤ α < 1. Recall from
Sect. 2.6 that K : L2

α(�)→ L2
α(�) is unitarily equivalent to

I ⊗ H(z) : L2(Re z = 0)⊗ L2
α(γ )→ L2(Re z = 0)⊗ L2

α(γ ). (3.11)
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For Re z = 0, we will in this section combine the description of H(z) as the double
layer potential operator of−�γ̂ + 1/4− z2 with a variant of an argument due to O.D.
Kellogg, in order to show that every eigenvalue of H∗(z) : L2−α(γ ) → L2−α is real.
The success of the Kellogg argument relies on the fact that the potential 1/4− z2 > 0
for Re z = 0.

In this discussion, H∗(z) = (H(z))∗ denotes the adjoint of H(z) with respect to
the L2(γ )-pairing. For f ∈ L2

α(γ ) and g ∈ L2−α(γ ), we see through the involution
t �→ 1/t that

〈H(z) f , g〉L2(γ ) = −
1

4π

∫
γ

∫
γ

∫ ∞
0

t z+1/2 tω · nω′

|tω − ω′|3
dt

t
f (ω′) dω′g(ω) dω

= − 1

4π

∫
γ

∫
γ

∫ ∞
0

t−z+1/2 tω · nω′

|ω − tω′|3
dt

t
g(ω) dω f (ω′) dω′

= 〈 f ,MK †(−z + 1/2)g〉L2(γ ),

where K † denotes the adjoint of K with respect to the L2
0(�)-pairing, which has

operator-valued convolution kernel

K †(t, ω, ω′) = − 1

4π t

(1/t)ω′ · nω

|(1/t)ω′ − ω|3 = −
1

4π

tω′ · nω

|ω′ − tω|3 .

Therefore,

H∗(z) =MK †(1/2− z̄), −3/2 < Re z < 3/2.

Applying the argument of Sect. 2.6 again, we conclude the following.

Lemma 3.9 For 0 ≤ α < 1, K † : L2−α(�)→ L2−α(�) is unitarily equivalent to

I ⊗ H∗(z) : L2(Re z = 0)⊗ L2−α(γ )→ L2(Re z = 0)⊗ L2−α(γ ).

One could of course have arrived at this lemma directly by taking the adjoint in
(3.11), but the preceding calculations are instructive for later arguments.

We now give the promised Kellogg argument, which relies on having access to a
fairly complete layer potential theory of −�γ̂ + 1/4 − z2 on the Lipschitz domain
γ̂ ⊂ S2. For this purpose, we refer to the (much more general) theory of boundary
layer potentials for Lipschitz domains in Riemannian manifolds [35, 36], developed
by M. Mitrea and M. Taylor.

Lemma 3.10 Suppose that 0 ≤ α < 1, Re z = 0, and λ /∈ (−1/2, 1/2). Then the
operator λI − H∗(z) : L2−α(γ ) −→ L2−α(γ ) is injective.

Proof Suppose that 0 �= f ∈ L2−α(γ ) satisfies (λI − H∗(z)) f = 0 for some λ ∈ C.
Let V = 1/4−z2 > 0, and let S̃(z) denote the single layer potential on γ for−�γ̂+V .
By Proposition 3.7, for suitable functions g on γ ,
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S̃(z)g(ω) =
∫

γ

[M�0(z + 3/2)] (ω, ω′)g(ω′) dω′, ω ∈ S2.

By Hölder’s inequality, L2−α(γ ) is continuously contained in L p(γ ) = L p(γ, dω) for
every 1 < p < 2

α+1 . Therefore, by the results of [35], H∗(z) : L2−α(γ ) → L p(γ ) is
bounded, and, for g ∈ L2−α(γ ),

(
∂

∂n
S̃(z)g

)
±

(ω) =
(
±1

2
I − H∗(z)

)
g(ω), a.e. ω ∈ γ.

Here
(

∂
∂n S̃(z)g

)
± denotes the ∂nω -derivative of S̃(z)g, defined in terms of non-

tangential limits from inside γ̂ or from its exterior γ̂− = S2\γ̂ (corresponding to
the ± in the notation). For any g ∈ C∞arc(γ ), we have that (−�γ̂ + V )S̃(z)g(ω) = 0,
ω /∈ γ , and applying Green’s formula, justified with maximal function estimates as in
[35, Proposition 4.1], yields that

I+(g) :=
∫

γ̂

|∇S̃(z)g(ω)|2 + V |S̃(z)g(ω)|2 d S(ω)

=
∫

γ

S̃(z)g(ω)

(
∂

∂n
S̃(z)g

)
+

(ω) dω.

and

I−(g) :=
∫

γ̂−
|∇S̃(z)g(ω)|2 + V |S̃(z)g(ω)|2 d S(ω)

= −
∫

γ

S̃(z)g(ω)

(
∂

∂n
S̃(z)g

)
−

(ω) dω,

where, in this proof only, ∇ denotes the gradient of S2. Note here that S̃(z) maps
L p(γ ) into the Sobolev space W 1,p(γ ) [35, Eq. (7.49)], and thus in particular that
S̃(z) is bounded as a map S̃(z) : L2−α(γ ) → Lq(γ ), 1

p + 1
q = 1. Hence the energies

I±(g) depend continuously on g ∈ L2−α(γ ). By Fatou’s lemma, it thus also follows
that L2−α(γ ) � g �→ S̃(z)g ∈ L2(S2, d S(ω)) and

L2−α(γ ) � g �→ ∇S̃(z)g ∈ L2(S2, d S(ω))⊕ L2(S2, d S(ω))

are continuous.
Therefore the equations

I±(g) = ±
∫

γ

S̃(z)g(ω)

(
±1

2
I − H∗(z)

)
g(ω) dω
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remain valid for general g ∈ L2−α(γ ), and in particular for g = f . Moreover, since f
is an eigenfunction of H∗(z), we have

I±( f ) =
(
1

2
∓ λ

)∫
γ

S̃(z) f (ω) f (ω) dω,

and thus

2λ(I+( f )+ I−( f )) = I−( f )− I+( f ). (3.12)

Both of the energies I±( f )must be positive. For if not, wewould have that S̃(z) f ≡
0 in either γ̂ or γ̂−, and therefore S̃(z) f = 0 on γ by [35, Proposition 3.8]. This would
yield that f = 0, since S̃(z) is injective on L p(γ ) [36, Equation (1.20)]. Therefore
(3.12) implies that λ ∈ (−1/2, 1/2). ��
Remark 3.11 The proof in particular shows that for Re z = 0 and 0 �= g ∈ L2(γ ),

〈S̃(z)g, g〉L2(γ ) =
∫

S2
|∇S̃(z)g(ω)|2 + V |S̃(z)g(ω)|2 d S(ω) > 0.

This is the basis for constructing the energy space E(γ,−�γ̂ +1/4−z2) � H−1/2(γ )

in Sect. 5.1. Furthermore, once constructed, the proof of Lemma 3.10 shows that
L2−α(γ ) is continuously contained in E(γ,−�γ̂ + 1/4− z2), 0 ≤ α < 1. Dualizing,
this can be interpreted as a non-sharp fractional Hardy inequality:

∫
γ

| f |2q−α dω ≤ Cα‖ f ‖2H1/2(γ )
, 0 ≤ α < 1.

4 Spectral theory on L2˛(@Ä)

4.1 Analysis of H(z)

Let � be a polyhedral cone and let K be its Neumann–Poincaré operator. Recall that
we write H(z) =MK (z + 1/2), −3/2 < Re z < 3/2, so that

H(z)v(ω) = − 1

4π

∫ ∞
0

∫
γ

t z+1/2 tω · nω′

|tω − ω′|3 v(ω′) dω′ dt

t
, v ∈ C∞arc(γ ),

ω ∈ γ \{E1, . . . , E J }.
Observe that H(z) is pointwise well-defined, since ω · nω′ = 0 whenever ω and ω′
belong to the same arc γ j . For each corner E j of γ , we choose a function ϕ j ∈ C∞arc(γ )

such that 0 ≤ ϕ j ≤ 1 on γ ,ϕ j is supported in a small neighbourhood of E j , andϕ j ≡ 1
close to E j . We then introduce the decomposition H(z) = H0(z)+ H1(z), where

H0(z) =
∑

1≤ j≤J

ϕ j H(z)ϕ j , H1(z) = H(z)− H0(z). (4.13)
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The starting point of this section is the following result of Elschner. We have extracted
a slightly more precise statement than given in [12, Theorem 2.1], which follows from
its proof. We denote the interior angle made by γ at E j by β j .

Lemma 4.12 [12] Let 0 ≤ α < 1, ε > 0, and δ > 0. Then

(i) The operator-valued map z �→ H(z) : L2
α(γ ) → L2

α(γ ) is analytic in the strip
−3/2 < Re z < 3/2.

(ii) If the supports suppϕ j are chosen sufficiently small, 1 ≤ j ≤ J , the decomposition
(4.13) satisfies the following on the closed strip −3/2+ δ ≤ Re z ≤ 3/2− δ:

‖H0(z)‖L(L2
α(γ )) ≤

1+ ε

2
max
1≤ j≤J

∣∣∣∣ sin((π − β j )(1− α)/2)

sin(π(1− α)/2)

∣∣∣∣ ,

and H1(z) : L2
α(γ )→ L2

α(γ ) is Hilbert–Schmidt with

lim| Im z|→∞‖H1(z)‖S2(L2
α(γ )) = 0,

where S2(L2
α(γ )) denotes the Hilbert–Schmidt norm on L2

α(γ ).

Next we will describe the spectrum of H(z) : L2
α(γ ) → L2

α(γ ). For 1 ≤ j ≤ J ,
let

�α,β j =
{
1

2

sin((π − β j )(
1−α
2 + iξ))

sin(π( 1−α
2 + iξ))

: −∞ ≤ ξ ≤ ∞
}

.

This is a simple closed curve in C with 0 ∈ �α,β j , described in detail in [40,
Lemma 12], see some examples in Figure 2. Let �̂α,β j denote �α,β j together with its
interior, and let �̂−α,β j

= −�̂α,β j denote its reflection in the imaginary axis.

Lemma 4.13 Let 0 ≤ α < 1 and −3/2 < Re z < 3/2. Then

σ
(

H(z), L2
α(γ )

)
=

⋃
1≤ j≤J

(�̂α,β j ∪ �̂−α,β j
) ∪�α

γ,z,

where �α
γ,z is a countable set of isolated eigenvalues in the complement of ∪ j (�̂α,β j ∪

�̂−α,β j
). Moreover, each isolated eigenvalue λz ∈ �α

γ,z depends continuously on z, and
if Re z = 0, then �α

γ,z ⊂ (−1/2, 1/2).
Proof Let χi be the characteristic function of γ̄i , i = 1, 2, and let ϕ1,1 = χ1ϕ1,
ϕ1,2 = χ2ϕ1. We first analyze the operator ϕ1,2H(z)ϕ1,1. Without loss of generality
we may assume that E1 is the north pole of S2, that γ1 lies in the plane x2 = 0, and
that nω′ = (0,−1, 0) for ω′ ∈ γ1. Then β1 is the polar angle between γ1 and γ2.
Therefore, ω ∈ γ2 and ω′ ∈ γ1 can be written ω = (cosβ1 sin s, sin β1 sin s, cos s),
ω′ = (sin s′, 0, cos s′), where, as before, s and s′ denote the arc lengths along γ from
E1 to ω and ω′, respectively.
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Fig. 2 The Jordan curves
�α,π/2, for different values of α
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In this parametrization of ω ∈ γ2 and ω′ ∈ γ1, the kernel of H(z) can be written

H(z)(s, s′) = 1

4π

∫ ∞
0

t z+3/2 b

(t2 − 2at + 1)3/2
dt

t
,

where a = a(s, s′) = ω · ω′ = cos s cos s′ + cosβ1 sin s sin s′ and b = b(s, s′) =
−nω′ · ω = sin β1 sin s. From (2.4), we thus have that

ϕ1,2H(z)ϕ1,1(ω, ω′) = 1

4π

b(s, s′)
1− a(s, s′)

+ I1(s, s′), ω ∈ γ2, ω′ ∈ γ1.

where the kernel I1(s, s′) = O(s(1+| log(s+s′)|)) defines an operator I1 : L2
α(γ )→

L2
α(γ ) which is Hilbert–Schmidt. We introduce the notation

Yβ1(s, s′) = 1

4π

b(s, s′)
1− a(s, s′)

.

For a small number s0 > 0 (reflecting the size of the support ofϕ1), we now consider
ϕ1,2Yβ1ϕ1,1, naturally understood as an operator on L2((0, s0), s−αds). Performing
the change of variables σ = tan(s/2), which induces an isomorphism

Q : L2((0, s0), s−αds)→ L2((0, tan(s0/2)), σ
−αdσ), Qv(σ ) = v(2 arctan σ),

we obtain

ϒβ1u(σ ′) := Qϕ1,2Yβ1ϕ1,1Q−1u(σ ′)

= sin β1

2π
Qϕ1,2(σ )

∫ tan( s0
2 )

0

σ
σ ′

1+ ( σ
σ ′
)2 − 2 cosβ1

σ
σ ′

Qϕ1,1(σ
′)u(σ ′) dσ ′

σ ′
.

(4.14)
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We see that ϒβ1 coincides with the localization Qϕ1,2Zβ1 Qϕ1,1 of a Mellin convolu-
tion operator Zβ1 : L2(R+, σ−αdσ)→ L2(R+, σ−αdσ) with convolution kernel

Zβ1(t) =
sin β1

2π

t

t2 − 2t cosβ1 + 1
.

This is the same convolution kernel that appears in the study of the Neumann–Poincaré
operator for planar polygonal domains [33]. We further conjugate with the unitary
multiplication operator

M
σ

1−α
2
: L2((0, tan(s0/2)), σ

−α dσ)→ L2 ((0, tan(s0/2)), dσ/σ) ,

obtaining that

M
σ

1−α
2

ϒβ1 M
σ

α−1
2
: L2 ((0, tan(s0/2)), dσ/σ)→ L2 ((0, tan(s0/2)), dσ/σ)

coincides with the localization Qϕ1,2Zα,β1 Qϕ1,1 of the Mellin convolution operator
Zα,β1 with convolution kernel

Zα,β1(t) =
sin β1

2π

t
3−α
2

t2 − 2t cosβ1 + 1
.

Therefore M
σ

1−α
2

ϒβ1 M
σ

α−1
2

belongs to the algebras ofMellin operators considered

in [11, 28, 33]. By applying the result described in Sect. 2.7, we obtain that

σess

(
ϕ1,2Yβ1ϕ1,1, L2

α(γ )
)
= {MZα,β1(iξ) : −∞ ≤ ξ ≤ ∞} = �α,β1 .

Furthermore, for any λ /∈ �α,β1 , we have for the Fredholm index that

ind(ϕ1,2Yβ1ϕ1,1 − λ, L2
α(γ )) = W (λ,�α,β1),

where W (λ,�α,β1) denotes the winding number of λ with respect to the Jordan curve
�α,β1 . In particular,

�̂α,β1 ⊂ σ
(
ϕ1,2Yβ1ϕ1,1, L2

α(γ )
)

.

By geometrical symmetry, as operators on L2((0, s0), s−αds), ϕ1,1H(z)ϕ1,2 only
differs from ϕ1,2H(z)ϕ1,1 by a compact operator. More precisely, with respect to the
decomposition L2

α(γ ) = L2
α(γ1)⊕ L2

α(γ2)⊕ · · · ⊕ L2
α(γJ ), we have that

ϕ1H(z)ϕ1 =

⎛
⎜⎜⎜⎝

0 ϕ1,2Yβ1ϕ1,1 · · · 0
ϕ1,2Yβ1ϕ1,1 0 · · · 0

...
...

...
...

0 0 · · · 0

⎞
⎟⎟⎟⎠+ compact. (4.15)

123



M. de León-Contreras, K.-M. Perfekt

The previous considerations of essential spectrum and Fredholm index, and some
elementary linear algebra, therefore yield that

�̂α,β1 ∪ �̂−α,β1
⊂ σ(ϕ1H(z)ϕ1, L2

α(γ )),

and that

ind(ϕ1H(z)ϕ1 − λ, L2
α(γ )) = W (λ,�α,β1 ∪�−α,β1

), λ /∈ �α,β1 ∪�−α,β1
.

The preceding analysis applies equally well to any of the operators ϕ j H(z)ϕ j ,
j = 2, . . . , J . Adding up and using the compactness of H1(z) we therefore find that

⋃
1≤ j≤J

(�̂α,β j ∪ �̂−α,β j
) ⊂ σ(H(z), L2

α(γ )),

and that

ind(H(z)− λ, L2
α(γ )) = 0, λ /∈

⋃
1≤ j≤J

(�̂α,β j ∪ �̂−α,β j
).

It follows from the considerations in [40, Lemma 12] that the complement of⋃
j (�̂α,β j ∪ �̂−α,β j

) is connected. Thus the analytic Fredholm theorem yields that
the spectrum �α

γ,z in this complement consists of isolated eigenvalues. If Re z = 0,
Lemma 3.10 implies that �α

γ,z ⊂ (−1/2, 1/2), since the index is 0.
Finally, we shall see that any eigenvalue λz ∈ �α

γ,z depends continuously on z in
the strip −3/2 < Re z < 3/2. Consider the disc Cr := {λ ∈ C : |λ − λz | ≤ r}, for
r > 0 so small that

σ(H(z), L2
α(γ )) ∩ Cr = {λz}.

By the analyticity of z′ �→ H(z′), we know that z′ �→ (H(z′) − λ)−1 is analytic for
z′ close to z and λ ∈ ∂Cr . In particular,

lim
z′→z

P H(z′)
∂Cr

= P H(z)
∂Cr

,

where

P H(z)
∂Cr

= − 1

2π i

∫
∂Cr

(H(z)− λ)−1 dλ

denotes the spectral projection corresponding to ∂Cr . ��
We shall also require the following lemma in our analysis.

Lemma 4.14 Under the conditions of Lemma 4.13, the sets of isolated eigenvalues
�α

γ,z are increasing in 0 ≤ α < 1.
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Proof Suppose that λ ∈ �α
γ,z . Then ind(H(z) − λ, L2

α(γ )) = 0 by (the proof of)

Lemma 4.13, and thus λ̄ is an eigenvalue of H∗(z) : L2
−α′(γ ) → L2

−α′(γ ) for α ≤
α′ < 1, since the spaces L2

−α′(γ ) are increasing in α′. However, the regions �̂α,β j are
decreasing in 0 ≤ α < 1 [40, Lemma 12], and thus also ind(H(z)− λ, L2

α′(γ )) = 0.

Therefore λ ∈ �α′
γ,z , α ≤ α′ < 1. ��

Remark 4.15 Since the spaces L2
α(γ ) are decreasing in α, it is obvious that the entire

point spectrum of H(z) : L2
α(γ ) → L2

α(γ ) is decreasing. Intuitively, more isolated
eigenvalues of H(z) : L2

α(γ ) → L2
α(γ ) are “uncovered” as α increases, as the other

part of the spectrum in Lemma 4.13 shrinks, see Fig. 2.

4.2 Analysis on polyhedral cones

As in the previous subsection, K denotes the Neumann–Poincaré operator of a polyhe-
dral cone�.Wewill now investigate the spectrumof K : L2

α(�)→ L2
α(�), 0 ≤ α < 1,

startingwith the following lemma. Recall that K † denotes the adjoint of K with respect
to the L2

0(�)-pairing.

Lemma 4.16 Let 0 ≤ α < 1. Suppose that we are given ξ ∈ R, λ ∈ C, and d > 0.
Then for any g ∈ L2

α(γ ) with ‖g‖L2
α(γ ) = 1 and ε > 0, there exists w ∈ L2

α(�) with

suppw ⊂ [0, d] × γ, ‖w‖L2
α(�) = 1,

such that

‖(K − λ)w‖2L2
α(�)

≤ 4‖(H(iξ)− λ)g‖2L2
α(γ )

+ ε2. (4.16)

Similarly, for any g̃ ∈ L2−α(γ ) with ‖g̃‖L2−α(γ ) = 1 and ε > 0, there exists w̃ ∈
L2−α(�) with supp w̃ ⊂ [0, d] × γ , ‖w̃‖L2−α(�) = 1, and

‖(K † − λ̄)w̃‖2
L2−α(�)

≤ 4‖(H∗(iξ)− λ̄)g̃‖2
L2−α(γ )

+ ε2. (4.17)

Proof For some small 0 < A < 1 to be specified later, let

f (r) = 1√
1
2 log(1/A)

χ[A,
√

A](r)r−1/2−iξ , r > 0,

and

w(rω) = f (r)g(ω), r > 0, ω ∈ γ.

Then suppw ⊂ [A,
√

A] × γ and ‖w‖L2
α(�) = 1. Furthermore,

h(iη) :=M(Mr1/2 f )(iη) = −i√
1
2 log(1/A)

A
i
2 (η−ξ) − Ai(η−ξ)

η − ξ
, η ∈ R,
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so that

|h(iη)| ≤ 2√
1
2 log(1/A) |η − ξ |

, η ∈ R. (4.18)

By continuity, choose δ > 0 so that ‖H(iη)− H(iξ)‖ ≤ ε/3 whenever |η − ξ | < δ.
Consider now the fact that

‖(K − λ)w‖2L2
α(�)

= 1

2π
‖I ⊗ (H(z)− λ)(h ⊗ g)‖2L2(Re z=0)⊗L2

α(γ )

= 1

2π

∫
R

|h(iη)|2‖(H(iη)− λ)g‖2L2
α(γ )

dη.

For |η − ξ | < δ we have that

1

2π

∫
|η−ξ |<δ

|h(iη)|2‖(H(iη)− λ)g‖2L2
α(γ )

dη

≤ 2

π

∫
|η−ξ |<δ

|h(iη)|2(‖(H(iξ)− λ)g‖2L2
α(γ )

+ ε2/9) dη

≤ 4‖(H(iξ)− λ)g‖2L2
α(γ )

+ ε2/2,

where we used that 1
2π

∫
R
|h(iη)|2 dη = 1. By the uniform boundedness of H(iη)

(Lemma 4.12) and (4.18), we clearly have for |η − ξ | > δ that

lim
A→0+

1

2π

∫
|η−ξ |>δ

|h(iη)|2‖(H(iη)− λ)g‖2L2
α(γ )

dη = 0.

This yields (4.16), if we choose A sufficiently small.
The inequality (4.17) is established through the same reasoning, after recalling

Lemma 3.9. ��

We can now establish the following invertibility result.
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Theorem 4.17 Let 0 ≤ α < 1 and λ ∈ C. Then K −λ : L2
α(�)→ L2

α(�) is invertible
if and only if λ /∈ σ(H(z), L2

α(γ )) for every z with Re z = 0, and

sup
Re z=0

‖(H(z)− λ)−1‖L(L2
α(γ )) <∞. (4.19)

Let d > 0. If K − λ is not invertible, then there is a sequence (wn)
∞
n=1 with

suppwn ⊂ [0, d] × γ that is either a singular Weyl sequence for K − λ or K † − λ̄.
That is, in the former case, ‖wn‖L2

α(�) = 1 for every n, wn → 0 weakly in L2
α(�),

and ‖(K − λ)wn‖L2
α(�) → 0. In the latter case, ‖wn‖L2−α(�) = 1, wn → 0 weakly in

L2−α(�), and ‖(K † − λ̄)wn‖L2−α(�) → 0. In particular,

σ(K , L2
α(�)) = σess(K , L2

α(�)).

Proof Assume first that H(z)−λ is invertible for every Re z = 0 and that (4.19) holds.
Then, by Lemma 2.6, I ⊗ (H(z) − λ)−1 defines a bounded operator on L2(Re z =
0)⊗L2

α(γ )which is the inverse of I⊗(H(z)−λ). Since this latter operator is unitarily
equivalent to K − λ : L2

α(�)→ L2
α(�), this shows that K − λ is invertible.

For the converse, suppose first that H(z) − λ is invertible for every z on the
line Re z = 0, but that ‖(H(z) − λ)−1‖L(L2

α(γ )) is unbounded on Re z = 0. Then
there exists a sequence (ξn) ⊂ R and functions gn such that ‖gn‖L2

α(γ ) = 1 and
limn→∞ ‖(H(iξn)−λ)gn‖ = 0. Applying Lemma 4.16, we construct a unit sequence
(wn)with suppwn ⊂ [0, 2−n]×γ and limn→∞ ‖(K −λ)wn‖L2

α(�) = 0. In particular,
K − λ is not invertible in this case.

Finally, we have to consider the case when there is a ξ0 ∈ R such that λ ∈
σ(H(iξ0), L2

α(γ )). If H(iξ0)−λ is not bounded from below, we construct the desired
Weyl sequence for K−λ from Lemma 4.16. If H(iξ0)−λ is bounded from below (but
not invertible), it must be that λ̄ is an eigenvalue of H∗(iξ0), and we use Lemma 4.16
to construct a Weyl sequence for K † − λ̄. ��

As a consequence we obtain the following incomplete description of the spectrum
of K : L2

α(�)→ L2
α(�), illustrated in Fig. 3. By the proof of Lemma 4.13, the Jordan

curve �α,β j arises as the Mellin transform of either a positive or a negative kernel,
depending on the sign of π − β j . We therefore have that

|�α,β j | := max{|λ| : λ ∈ �α,β j } =
1

2

∣∣∣∣ sin((π − β j )(1/2− α/2))

sin(π(1/2− α/2))

∣∣∣∣ ,

and

�̂α,β j ∪ �̂−α,β j
⊂ C|�α,β j | := {λ : |λ| ≤ |�α,β j |}.

A calculus argument shows that |�α,β j | is decreasing in 0 ≤ α < 1, for every j [40,
Lemma 12]. If c > d we use the convention that (c, d] = ∅.
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Fig. 3 An illustration of
Theorem 4.18 for a polyhedral
cone � with angles β1 = π/4,

β2 = π/2, and
β3 = 2π/3, andα = 1/2. The set
� =⋃1≤ j≤3(�̂1/2,β j ∪ �̂−1/2,β j

) ∪�1/2

has been plotted in the complex
plane, in various shades of blue.
The set �1/2 is generically
drawn; one or both of the
intervals comprising this set may
actually be empty. The region
C|�1/2,β1 |\� is shaded in gray

Theorem 4.18 Let � be a polyhedral cone with angles β1, . . . , βJ , and let 0 ≤ α < 1.
We let j∗ be an index such that

|�α,β j∗ | = max
j
|�α,β j |,

and denote

�α={λ : λ is an isolated eigenvalue of H(z) : L2
α(γ )→L2

α(γ ), for someRe z=0}.

Then there are two numbers 0 ≤ μ± < 1/2, independent of α, such that

�α =
[
−μ−,−|�α,β j∗ |

)
∪
(
|�α,β j∗ |, μ+

]
.

Furthermore, we have that σ(K , L2
α(�)) = σess(K , L2

α(�)) and that

⋃
1≤ j≤J

(�̂α,β j ∪ �̂−α,β j
) ∪�α ⊂ σ

(
K , L2

α(�)
)
⊂ C|�α,β j∗ | ∪�α. (4.20)

Remark 4.19 The interval [−|�α,β j |, |�α,β j |] is contained in �̂α,β j ∪�̂−α,β j
. Therefore

Theorem 4.18 characterizes all real points in σ
(
K , L2

α(�)
)
. There is a gap of complex

points λ ∈ C|�α,β j∗ |\
⋃

1≤ j≤J (�̂α,β j ∪ �̂−α,β j
) in (4.20) because while H(z) − λ is

invertible for everyRe z = 0,wedonot knowhow to control the resolvent (H(z)−λ)−1
uniformly in z, cf. Theorem 4.17.

Proof By Lemma 4.13,

�α =
⋃

Re z=0
�α

γ,z ⊂ (−1/2, 1/2)\[−|�α,β j∗ |, |�α,β j∗ |].

123



The quasi-static plasmonic problem for polyhedra

Let

μα± = sup
Re z=0

max{λ : ±λ ∈ �α
γ,z}.

Suppose that μα+ > |�α,β j∗ |, so that there is z such that

λz,+ := max�α
γ,z > |�α,β j∗ |.

By Lemma 4.13, λz,+ depends continuously on z as long as λz,+ > |�α,β j∗ |, tracing
out an interval as z varies. From item ii) of Lemma 4.12, we know that

lim|ξ |→∞‖H(iξ)‖L(L2
α(γ )) ≤ |�α,β j∗ |. (4.21)

It therefore follows that there is a point z∗ for which λz∗,+ = μα+ and that

�α ∩ [0, 1/2) =
(
|�α,β j∗ |, μα+

]
.

Note also that if 0 ≤ α, α′ < 1 are two numbers such that μα+ > |�α,β j∗ | and
μα′+ > |�α′,β j∗ |, then μα+ = μα′+ , by Lemma 4.14 and Remark 4.15.

If μα− > |�α,β j∗ |, a similar argument applies for �α ∩ (−1/2, 0].
By Lemma 4.13 and Theorem 4.17, we now have that

⋃
1≤ j≤J

(�̂α,β j ∪ �̂−α,β j
) ∪�α ⊂ σ

(
K , L2

α(�)
)

.

On the other hand, if λ /∈ C|�α,β j∗ | ∪�α , (4.21) allows us to apply a Neumann series
argument and the continuity of H(z) to see that

sup
Re z=0

‖(H(z)− λ)−1‖L(L2
α(γ )) <∞.

Therefore λ /∈ σ
(
K , L2

α(�)
)
in this case, by Theorem 4.17. ��

4.3 Localization to @Ä

Let ∂� be a polyhedron and let K be itsNeumann–Poincaré operator. In this subsection
we will show that the essential spectrum σess(K , L2

α(∂�)), 0 ≤ α < 1, is determined
by the tangent polyhedral cones �i of the vertices of ∂�, i = 1, . . . , I . We first need
the following lemma.

Lemma 4.20 Let 0 ≤ α < 1, and let ϕ be a Lipschitz function on ∂�. Then the
commutator [K , ϕ] = Kϕ − ϕK is compact on L2

α(∂�).
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Proof By a partition of unity it is sufficient to prove the statement for ψ1[K , ϕ]ψ2,
with a polyhedral cone � in place of ∂� and ψ1, ψ2, ϕ being compactly supported
Lipschitz functions on �. Then

ψ1[K , ϕ]ψ2 f (rω) =
∫

�

C(rω, r ′ω′) f (r ′ω′) dr ′ q(ω′)−αdω′,

where the kernel C is supported in [0, A]× γ ×[0, A]× γ for some 0 < A <∞ and
satisfies

|C(rω, r ′ω′)| � r ′q(ω′)α

|rω − r ′ω′| .

This immediately implies that the integral operator with kernel
C(rω, r ′ω′)χ{|rω−r ′ω′|>ε} is Hilbert-Schmidt on L2

α(�) for every ε > 0,

∫
|rω−r ′ω′|>ε

|C(rω, r ′ω′)|2 dr q(ω)−αdω dr ′ q(ω′)−αdω′ <∞.

For |rω − r ′ω′| < ε we have that

|C(rω, r ′ω′)| � ε1/2
r ′q(ω′)α

|rω − r ′ω′|3/2︸ ︷︷ ︸
T (rω,r ′ω′)

.

It is thus sufficient to prove that the integral operator T with kernel T (rω, r ′ω′) is
bounded on L2([0, A] × γ, dr q(ω)−αdω). By applying the unitary transformation

M
r
1
2

M
q(ω)

1−α
2
: L2([0, A] × γ, dr q(ω)−αdω)→ L2([0, A] × γ, r−1dr q(ω)−1dω),

it is equivalent to prove that the integral operator T̃ ,

T̃ f (rω) =
∫

γ

∫ A

0
T̃ (rω, r ′ω′) f (r ′ω′) dr ′

r ′
dω′

q(ω′)
,

with kernel

T̃ (rω, r ′ω′) =
( r

r ′
) 1

2
(

q(ω)

q(ω′)

) 1−α
2 (r ′)2q(ω′)
|rω − r ′ω′|3/2 ,

is bounded on L2([0, A]×γ, r−1dr q(ω)−1dω). To do thiswe verify that T̃ is bounded
on L1 = L1([0, A]×γ, r−1dr q(ω)−1dω) and L∞ and apply the Riesz-Thorin inter-
polation theorem.
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To see that it is bounded on L1, it is sufficient to see that

sup
r ′,ω′

∫
γ

∫ A

0
T̃ (rω, r ′ω′) dr

r

dω

q(ω)
<∞.

By the change of variable h = r/r ′ we have that
∫

γ

∫ A

0
T̃ (rω, r ′ω′) dr

r

dω

q(ω)

≤ A1/2
∫

γ

(
q(ω)

q(ω′)

) 1−α
2

q(ω′)
∫ ∞
0

h
1
2

1

|hω − ω′|3/2
dh

h

dω

q(ω)
,

where
∫ ∞
0

h
1
2

1

|hω − ω′|3/2
dh

h
=
∫ ∞
0

h
1
2

1

(h2 − 2hω · ω′ + 1)3/4
dh

h

� 1

(1− ω · ω′) 1
4

= 21/4

|ω − ω′|1/2 .

Thus we are left to show that

sup
ω′

∫
γ

(
q(ω)

q(ω′)

) 1−α
2 q(ω′)
|ω − ω′|1/2

dω

q(ω)
<∞. (4.22)

Since 0 ≤ α < 1, we are only concerned with the situation that both ω and ω′ are
close to the same corner of γ , and we then introduce arc-length parametrization. Thus
we have to verify that

sup
0<s′<1

∫ 1

0

( s

s′
) 1−α

2 s′

|s − s′|1/2
ds

s
<∞

and

sup
0<s′<1

∫ 1

0

( s

s′
) 1−α

2 s′

(s + s′)1/2
ds

s
<∞,

corresponding to whetherω andω′ lie on the same arc or not. By the change of variable
t = s/s′, we have

∫ 1

0

( s

s′
) 1−α

2 s′

|s ± s′|1/2
ds

s
≤ (s′)

1
2

∫ 1/s′

0
t
1−α
2

1

|t ± 1|1/2
dt

t
� (s′)

1
2 (1+ | log s′|),

where we used that 0 ≤ α < 1. We conclude that (4.22) holds.
The boundedness of T̃ on L∞ can be proved similarly. ��
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We now present our localization theorem for L2
α(∂�).

Theorem 4.21 Let 0 ≤ α < 1 and let K be the Neumann–Poincaré operator of a
polyhedron ∂�. For each vertex of ∂�, let Ki denote the Neumann–Poincaré operator
of the corresponding tangent polyhedral cone �i , i = 1, . . . , I .

Then, for λ ∈ C, K − λ is Fredholm on L2
α(∂�) if and only if Ki − λ is invertible

on L2
α(�i ) for every i = 1, . . . , I . That is,

σess(K , L2
α(∂�)) =

⋃
1≤i≤I

σ(Ki , L2
α(�i )).

The spectra σ(Ki , L2
α(�i )) have been described in Theorem 4.18.

Remark 4.22 Onewould like to accompany this theoremwith aKellogg-type argument
for K : L2

α(∂�) → L2
α(∂�), cf. Lemma 3.10, but we have been unable to produce

such a result.

Proof Let {ϕi }Ii=1 be a partition of unity of ∂�, as described in Sect. 2.2, and let
{ηi }1≤i≤I be a family of Lipschitz functions on ∂� such thatηi ≡ 1 in a neighbourhood
of suppϕi and ηi ≡ 0 on ∂�\�i . As usual, by very slight abuse of notation, we
understand functions such as ϕi and ηi as functions on both ∂� and �i .

In one direction, we argue along the lines of [32, Lemma 1]. Suppose that λI − Ki

is invertible on L2
α(�i ), for every i = 1, . . . , I . Then, for f ∈ L2

α(∂�),

‖ f ‖L2
α(∂�) �

∑
1≤i≤I

‖ϕi f ‖L2
α(�i )

�
∑

1≤i≤I

‖(λI − Ki )ϕi f ‖L2
α(�i )

�
∑

1≤i≤I

‖ηi (λI − K )ϕi f ‖L2
α(�i )

+
∑

1≤i≤I

‖(1− ηi )(λI − Ki )ϕi f ‖L2
α(�i )

�
∑

1≤i≤I

‖(λI − K )ϕi f ‖L2
α(∂�) +

∑
1≤i≤I

‖(1− ηi )Kiϕi f ‖L2
α(�i )

.

Since (1− ηi ) and ϕi have disjoint supports, the operator (1− ηi )Kiϕi : L2
α(∂�)→

L2
α(�i ) is Hilbert–Schmidt. Furthermore, by Lemma 4.20, the commutator [K , ϕi ] =

Kϕi −ϕi K : L2
α(∂�)→ L2

α(∂�) is compact, for each i = 1, . . . , I . Therefore, there
is a Hilbert space H and a compact operator C : L2

α(∂�)→ H such that

‖ f ‖L2
α(∂�) �

∑
1≤i≤I

‖ϕi (λI − K ) f ‖L2
α(∂�) + ‖C f ‖H � ‖(λI − K ) f ‖L2

α(∂�) + ‖C f ‖H.

This means that λI −K is upper semi-Fredholm on L2
α(∂�). Applying the exact same

argument to the L2
0(∂�)-adjoint K † shows that also λ̄I − K † is upper semi-Fredholm

on (L2
α(∂�))′ � L2−α(∂�). Therefore λI − K is Fredholm.

For the converse, suppose that there exists i0 ∈ {1, . . . , I } such that λI − Ki0 is
not invertible on L2

α(�i0). By Theorem 4.17, there is a Weyl sequence (wn) for either
λI − Ki0 or λ̄I − K †

i0
, and we can choose the functions wn to have arbitarily small
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support around the vertex of�i0 . We treat the former case; the argument for the second
case is identical.

As a sequence (wn) ⊂ L2
α(∂�), ‖wn‖L2(∂�) = 1 for every n and wn → 0 weakly.

Furthermore, assuming we chose wn to have sufficiently small support,

(λI − K )wn = ηi0(λI − K )ϕi0wn − (1− ηi0)Kϕi0wn, on ∂�.

Here (1 − ηi0)Kϕi0wn → 0 in norm as n →∞, since (1 − ηi0)Kϕi0 is compact on
L2

α(∂�) and wn → 0 weakly, while

ηi0(λI − K )ϕi0wn = ηi0(λI − Ki0)wn → 0

because (wn) is a Weyl sequence for (λI − Ki0). Thus (wn) is a Weyl sequence also
for λI − K , and therefore λI − K is not Fredholm. ��

5 Spectral theory on the energy space

5.1 The energy space of a polyhedral cone

Let � be a Lipschitz polyhedral cone. In this subsection we study the energy space
E(�) defined in Sect. 2.3.

In Sect. 3.1 we introduced the Mellin operator S0 = Mr−1/2SMr−1/2 on �. Com-
paring its convolution kernel (3.6) with Proposition 3.7, we observe, for ξ ∈ R, that
MS0(iξ + 1) coincides with the single layer potential on γ for −�γ̂ + 1/4+ ξ2,

MS0(iξ + 1) = S̃(iξ).

Wetherefore introduce the space H−1/2ξ (γ ) = E(γ,−�γ̂+1/4+ξ2) as the completion

of L2(γ ) in the norm

‖g‖2
H−1/2ξ (γ )

= 〈S̃(iξ)g, g〉L2(γ ),

recalling from Remark 3.11 that

‖g‖2
H−1/2ξ (γ )

=
∫

S2
|∇S̃(iξ)g(ω)|2 + (1/4+ ξ2)|S̃(iξ)g(ω)|2 d S(ω). (5.23)

The connection with E(�) arises from the computation

〈S f , g〉L2(�) = 〈MrS0Mr−1 Mr3/2 f , Mr3/2g〉L2(R+, dr
r )⊗L2(γ )

= 1

2π

∫
R

〈S̃(iξ)M f (iξ + 3/2),Mg(iξ + 3/2)〉L2(γ ) dξ

= 1

2π

∫
R

〈M f (iξ + 3/2),Mg(iξ + 3/2)〉
H−1/2ξ (γ )

dξ,
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which is not hard to justify for f , g ∈ C∞c (∪ j Fj ). By a density argument,
1√
2π

MMr3/2 therefore induces a unitary map

1√
2π

MMr3/2 : E(�)→ L2(R, dξ)⊗ E(γ,−�γ̂ + 1/4+ ξ2).

Wenow focus our attention on the spacesE(γ,−�γ̂+1/4+ξ2). Being a single layer
potential operator, we already know that S̃(iξ) : L2(γ )→ H1(γ ) is an isomorphism
for every ξ ∈ R [35, Proposition 7.5].We first establish that this isomorphism depends
continuously on ξ .

Lemma 5.23 The map

R � ξ �→ S̃(iξ) ∈ L(L2(γ ), H1(γ ))

is uniformly continuous.

Proof Recall from Sect. 3.1 that the integral kernel of S̃(iξ) is given by

(S̃(iξ))(ω, ω′) = (MS0(iξ + 1))(ω, ω′) = 1

4π

∫ ∞
0

t iξ+1/2

|tω − ω′|
dt

t
, ω, ω′ ∈ γ.

For ξ, ξ ′ ∈ R, we have that

∣∣∣∣∣
∫ ∞
0

t iξ+3/2 − t iξ ′+3/2

(t2 − 2tω · ω′ + 1)3/2
dt

t

∣∣∣∣∣ ≤ |ξ − ξ ′|
∫ ∞
0

t3/2| log t |
(t2 − 2tω · ω′ + 1)3/2

dt

t

� |ξ − ξ ′|√
1− ω · ω′ =

√
2
|ξ − ξ ′|
|ω − ω′| , ω, ω′ ∈ γ.

Consequently, differentiating in the arc-length parameter s, ω = ω(s), we find, for
ω ∈ γ \{E1, . . . , E J } and ω′ �= ω, that

|∂s(S̃(iξ)− S̃(iξ ′))(ω, ω′)| � |ξ − ξ ′| |∂sω · ω′|
|ω − ω′| � |ξ − ξ ′|.

Through similar but simpler reasoning, the kernel itself satisfies the same estimate,

(S̃(iξ)− S̃(iξ ′))(ω, ω′) � |ξ − ξ ′|.

It follows that

‖S̃(iξ)− S̃(iξ ′)‖L(L2(γ ),H1(γ )) � |ξ − ξ ′|.

��
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S̃(iξ) : L2(γ )→ H1(γ ) is an isomorphism and S̃(iξ) : L2(γ )→ L2(γ ) is a non-
negative operator, by (5.23). Duality therefore yields that S̃(iξ) : H−1(γ ) → L2(γ )

is an isomorphism, and thus that

〈S̃(iξ)2u, u〉L2(γ ) = ‖S̃(iξ)u‖2L2(γ )
� ‖u‖2H−1(γ )

,

with implied constants depending on ξ . By interpolation, S̃(iξ) : H−1/2(γ ) →
H1/2(γ ) is also an isomorphism. Furthermore, interpolation yields that

〈S̃(iξ)u, u〉L2(γ ) = ‖S̃(iξ)
1
2 u‖2L2(γ )

� ‖u‖2H−1/2(γ )
,

initially for u ∈ L2(γ ), see the proof of Theorem 15.1 in [29]. In other words,

E(γ,−�γ̂ + 1/4+ ξ2) � H−1/2(γ ).

Lemma 5.23 implies that this identification depends continuously on ξ .

Lemma 5.24 Let ξ ∈ R. For any ε > 0, there is a δ > 0 such that if |ξ − ξ ′| < δ, then

∣∣∣∣‖u‖H−1/2ξ (γ )
− ‖u‖

H−1/2
ξ ′ (γ )

∣∣∣∣ ≤ ε‖u‖H−1/2(γ ).

In particular, for any compact set B ⊂ R, there are constants cB, CB > 0 such that

cB‖u‖H−1/2(γ ) ≤ ‖u‖H−1/2ξ (γ )
≤ CB‖u‖H−1/2(γ ), ξ ∈ B, u ∈ H−1/2(γ ).

(5.24)

Proof By Lemma 5.23, there is for every ε > 0 a δ > 0 such that if |ξ − ξ ′| < δ, then

‖S̃(iξ)− S̃(iξ ′)‖L(L2(γ ),H1(γ )) = ‖S̃(iξ)− S̃(iξ ′)‖L(H−1(γ ),L2(γ )) < ε.

By interpolation we obtain, for |ξ − ξ ′| < δ, that

‖S̃(iξ)− S̃(iξ ′)‖L(H−1/2(γ ),H1/2(γ )) < ε,

and therefore that

∣∣∣∣‖u‖2H−1/2ξ (γ )
− ‖u‖2

H−1/2
ξ ′ (γ )

∣∣∣∣ = |〈(S̃(iξ)− S̃(iξ ′))u, u〉L2(γ )| ≤ ε‖u‖2H−1/2(γ )
.

Since ‖u‖
H−1/2ξ (γ )

� ‖u‖H−1/2(γ ) for every fixed ξ , this implies (5.24) via a compact-

ness argument. In turn, it also implies the continuity of the H−1/2ξ (γ )-norm. ��

123



M. de León-Contreras, K.-M. Perfekt

5.2 Analysis of H(i�) on H1/2(�)

Let ξ ∈ R. Since H(iξ) is the double layer potential operator on γ for−�γ̂+1/4+ξ2,
we have the Calderón identity

H(iξ)S̃(iξ) = S̃(iξ)H∗(iξ), (5.25)

valid on L2(γ ) [35, Formula (7.41)]. Therefore H∗(iξ) is formally symmetric in the
scalar product of E(γ,−�γ̂ + 1/4 + ξ2) (just like K ∗ is symmetric in the scalar
product of E(∂�)). In fact, the symmetrization theory initiated by Krein [24] implies
that H∗(iξ) defines a bounded self-adjoint operator on E(γ,−�γ̂ + 1/4+ ξ2), and

‖H∗(iξ)‖L(H−1/2ξ (γ ))
≤ ‖H∗(iξ)‖L2(γ ).

Combined with Lemma 4.12, we have the following conclusion.

Lemma 5.25 For every ξ ∈ R, H∗(iξ) is self-adjoint on E(γ,−�γ̂ + 1/4+ ξ2), and

sup
ξ∈R
‖H∗(iξ)‖L(H−1/2ξ (γ ))

<∞.

We can also deduce the continuous dependence on ξ from (5.25).

Lemma 5.26 The map ξ �→ H(iξ) : H1/2(γ )→ H1/2(γ ) is continuous on R.

Proof From Lemmas 4.12 and 5.23 we know that H(iξ) : L2(γ ) → L2(γ ) and
S̃(iξ) : L2(γ ) → H1(γ ) depend continuously on ξ . Therefore the same is true of
H(iξ) : H1(γ )→ H1(γ ), in view of the formula

H(iξ) = S̃(iξ)H∗(iξ)(S̃(iξ))−1 : H1(γ )→ H1(γ ).

The result now follows from interpolation. ��
To state themain result of this subsection, we recall the notation of Lemma 4.13 and

Theorem 4.18. In particular, �α
γ,iξ denotes the isolated eigenvalues of

H(iξ) : L2
α(γ )→ L2

α(γ ). By Lemma 4.13, every λ ∈ �α
γ,iξ is located in (−1/2, 1/2)

and satisfies |λ| > |�α,β j∗ |. By Lemma 4.14, the sets �α
γ,iξ are increasing in

0 ≤ α < 1.

Theorem 5.27 For every ξ ∈ R,

σ
(

H(iξ), H1/2(γ )
)
=
{

x ∈ R : |x | ≤ max
1≤ j≤J

|1− β j/π |
2

}
∪�∗γ,iξ ,

where the set �∗γ,iξ ⊂ (−1/2, 1/2) consists of the isolated eigenvalues of

H(iξ) : H1/2(γ )→ H1/2(γ ) and satisfies

�∗γ,iξ =
⋃

0≤α<1

�α
γ,iξ .
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Furthermore, each point λξ ∈ �∗γ,iξ depends continuously on ξ .

Proof We refer to the decomposition (4.13) for Re z = 0,

H(iξ) = H0(iξ)+ H1(iξ) =
∑

1≤ j≤J

ϕ j H(iξ)ϕ j + H1(iξ).

Then H1(iξ) : L2(γ ) → L2(γ ) is a Hilbert-Schmidt operator and it is not hard to
see that H1(iξ) : H1(γ ) → H1(γ ) is compact [12, p. 120]. From (4.14) and (4.15)
we find a planar curvilinear polygon γ̃ ⊂ R

2 with the same angles as γ and a bi-
Lipschitz change of variable τ : γ̃ → γ , inducing an operator Q : H1(γ )→ H1(γ̃ ),
Qv = v ◦ τ , such that:

• in a neighborhood of every corner, γ̃ coincides with two line segments;
• H0(iξ) = Y + I (ξ) decomposes into a compact term I (ξ) : L2(γ )→ L2(γ ) and
an operator Y such that

QY Q−1 =
J∑

j=1
ρ j Kγ̃ ρ j ,

where Kγ̃ is the planar Neumann–Poincaré operator of γ̃ , and (ρ j ) j are smooth
cut-off functions for the corners of γ̃ , with mutually disjoint supports.

Note that H(iξ) : H1(γ ) → H1(γ ) is bounded as a consequence of its L2(γ )-
boundedness and (5.25). The operator QY Q−1 : H1(γ̃ ) → H1(γ̃ ), and thus
Y : H1(γ ) → H1(γ ), is bounded for a similar reason. We conclude that I (ξ) :
H1(γ )→ H1(γ ) must be bounded.

Since H1(iξ), I (ξ) : L2(γ ) → L2(γ ) are compact and H1(iξ), I (ξ) : H1(γ ) →
H1(γ ) are bounded, extrapolation [10] (see Sect. 2.5) yields that H1(iξ) and I (ξ) are
compact as operators on H1/2(γ ). The planar operator QY Q−1 has been studied in
[41, Theorem 7 and Lemma 9]. Since Q also acts as an isomorphism Q : H1/2(γ )→
H1/2(γ̃ ) we conclude that

σess(H(iξ), H1/2(γ )) = σess(QY Q−1, H1/2(γ̃ ))

=
{

x ∈ R : |x | ≤ max
1≤ j≤J

|1− β j/π |
2

}
.

The remainder of the spectrum is made up of a sequence�∗γ,iξ of isolated eigenvalues,

since H∗(iξ) : H−1/2(γ ) → H−1/2(γ ) is self-adjoint in the H−1/2ξ (γ )-norm, see
Lemma 5.25.

Suppose that λ ∈ �∗γ,iξ . By the Hardy-type inequality deduced in Remark 3.11
(which also follows from the Rellich-Kondrachov theorem and a fractional Hardy
inequality), we know that H1/2(γ ) ⊂ L2

α(γ ) for every 0 ≤ α < 1. Thus λ is an
eigenvalue of H(iξ) : L2

α(γ )→ L2
α(γ ) for every 0 ≤ α < 1. Since

lim
α→1−

|�α,β j | =
|1− β j/π |

2
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we find that λ is an isolated eigenvalue of H(iξ) : L2
α(γ ) → L2

α(γ ) for sufficiently
large α < 1, that is, λ ∈ �α

γ,iξ . Conversely, if λ ∈ �α
γ,iξ for some 0 ≤ α < 1, then, by

an index argument, λ is an eigenvalue of H∗(iξ) : L2−α(γ )→ L2−α(γ ) and therefore
of H∗(iξ) : H−1/2(γ )→ H−1/2(γ ), since L2−α(γ ) ⊂ H−1/2(γ ). Thus λ ∈ �∗γ,iξ .

The continuity of the eigenvalues follows from the same argument as in
Lemma 4.13. ��

5.3 Analysis on the energy space of a polyhedral cone

As in Sect. 5.1, let � be a Lipschitz polyhedral cone. Since K ∗ is formed with respect
to the duality pairing of L2(�) = L2(R+, r dr) ⊗ L2(γ ), its convolution kernel is
given by

K ∗(t, ω, ω′) = 1

t2
K

(
1

t
, ω′, ω

)
.

Therefore, for 0 < Re z < 3,

MK ∗(z) = (MK (2− z̄))∗ = H∗(3/2− z̄).

In particular, when z = iξ + 3/2, ξ ∈ R, we have that

MK ∗(iξ + 3/2) = H∗(iξ).

By the identification of E(�) in Sect. 5.1 and Lemma 5.25, we therefore obtain, for
f , g ∈ C∞c (∪ j Fj ), that

〈K ∗ f , g〉E(�) = 1

2π

∫
R

〈H∗(iξ)M f (iξ + 3/2),Mg(iξ + 3/2)〉
H−1/2ξ (γ )

dξ

= 1

2π

∫
R

〈M f (iξ + 3/2), H∗(iξ)Mg(iξ + 3/2)〉
H−1/2ξ (γ )

dξ

= 〈 f , K ∗g〉E(�).

In other words, we have the following lemma.

Lemma 5.28 K ∗ : E(�)→ E(�) is unitarily equivalent to

I ⊗ H∗(iξ) : L2(R, dξ)⊗ H−1/2ξ (γ )→ L2(R, dξ)⊗ H−1/2ξ (γ ).

In particular, K ∗ : E(�)→ E(�) is self-adjoint and bounded, by Lemma 5.25.

For brevity, we write

|�∗,β j | =
|1− β j/π |

2
,

and let j∗ be an index such that |�∗,β j∗ | = max1≤ j≤J |�∗,β j |.
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Theorem 5.29 Let μ± be as in Theorem 4.18, and let

�∗ = {λ : λ is an isolated eigenvalue of H(z) : H1/2(γ )

→ H1/2(γ ), for someRe z = 0}.

Then

�∗ =
[
−μ−,−|�∗,β j∗ |

)
∪
(
|�∗,β j∗ |, μ+

]
. (5.26)

Furthermore, σ(K ∗, E(�)) = σess(K ∗, E(�)), and

σ(K ∗, E(�)) =
[
−|�∗,β j∗ |, |�∗,β j∗ |

]
∪�∗.

Proof By Theorem 5.27,

�∗ =
⋃

Re z=0
�∗γ,z =

⋃
0≤α<1

�α.

Since inf0≤α<1 |�α,β j | = |�∗,β j |, (5.26) follows from Theorem 4.18.

Suppose that λ /∈
[
−|�∗,β j∗ |, |�∗,β j∗ |

]
∪ �∗. Then, by Theorem 5.27 and since

H∗(iξ) is self-adjoint on H−1/2ξ (γ ),

sup
ξ∈R
‖(H∗(iξ)− λ)−1‖L(H−1/2ξ (γ ))

= sup
ξ∈R

1

dist(λ, σ (H(iξ), H1/2(γ )))
<∞.

Therefore, by Lemma 2.6, I ⊗ (H∗(iξ)− λ)−1 defines a bounded inverse of

I ⊗ (H∗(iξ)− λ) : L2(R, dξ)⊗ H−1/2ξ (γ )→ L2(R, dξ)⊗ H−1/2ξ (γ ).

Hence λ /∈ σ(K ∗, E(�)), by Lemma 5.28.

Conversely, suppose that λ ∈
[
−|�∗,β j∗ |, |�∗,β j∗ |

]
∪ �∗. Then, again by

self-adjointness, there is a ξ ∈ R such that λ is either an eigenvalue of
H∗(iξ) : H−1/2ξ (γ )→ H−1/2ξ (γ ), or there is a singularWeyl sequence for H∗(iξ)−λ.
Then we can follow the arguments of Lemma 4.16 and Theorem 4.17 with minor mod-
ifications in order to construct a singular Weyl sequence for K ∗ − λ : E(�)→ E(�),
showing that λ ∈ σess(K ∗, E(�)). ��

When the polyhedral cone is convex, we can obtain additional information about
μ+.

Theorem 5.30 Suppose that the polyhedral cone �̂ is convex. Then μ− ≤ μ+ and

μ+ = max σ(H∗(0), H−1/2(γ )).
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Proof Suppose that λ ∈ �∗γ,iξ for some ξ ∈ R. Then, by Theorem 5.27, there is an

0 ≤ α < 1 such thatλ ∈ �α
γ,iξ . Therefore there is a function g ∈ L2−α(γ ) ⊂ H−1/2(γ )

in the kernel of H∗(iξ)− λ.
Since �̂ is convex, the convolution kernel of K ∗ satisfies K ∗(t, ω, ω′) ≥ 0 for all

t ∈ R+ and γ, γ ′ ∈ ω, and therefore

|H∗(iξ)(ω, ω′)| =
∣∣∣∣
∫ ∞
0

t iξ+3/2K ∗(t, ω, ω′) dt

t

∣∣∣∣ ≤ H∗(0)(ω, ω′), ω, ω′ ∈ γ.

In particular, |λ||g| = |H∗(iξ)g| ≤ H∗(0)|g|. Noting that |g| ∈ L2−α(γ ) ⊂ H−1/2(γ )

and that the kernel of S̃(0) is positive, we find that

〈H∗(0)|g|, |g|〉
H−1/20 (γ )

≥ |λ|‖ |g| ‖2
H−1/20 (γ )

.

Since H∗(0) : H−1/20 (γ ) → H−1/20 (γ ) is self-adjoint, it follows from the min-max
principle that |λ| ≤ max�∗γ,0. This proves the theorem. ��

5.4 Localization in the energy space

Let ∂� be the boundary of a Lipschitz polyhedron, and let K be the associated
Neumann–Poincaré operator.Before proving a localization result for K : H1/2(∂�)→
H1/2(∂�), we need a number of lemmas. Recall that the energy space E(∂�) is iso-
morphic to H−1/2(∂�).

Lemma 5.31 Let ϕ be a Lipschitz function on ∂�. Then the commutator [K ∗, ϕ] =
K ∗ϕ − ϕK ∗ is compact on E(∂�).

Proof [K ∗, ϕ] : L2(∂�) → L2(∂�) is compact, since the kernel of [K ∗, ϕ] is
weakly singular. Furthermore, [K ∗, ϕ] : H−1(∂�) → H−1(∂�) is bounded, since
K : H1(∂�)→ H1(∂�) is bounded [50]. From extrapolation [10] (see Sect. 2.5) we
therefore conclude that [K ∗, ϕ] is compact on H−1/2(∂�) � E(∂�). ��

To utilize our understanding of the adjoint Neumann–Poincaré operator
K ∗� : E(�) → E(�) for Lipschitz polyhedral cones �, we also need to recall some
aspects of [39, Sect. 4].We may assume that � is of the form

� = {(x ′, φ(x ′)) : x ′ ∈ R
2},

where φ : R2 → R is Lipschitz continuous. For a function f on �, we define � f as
the function on R

2 for which

� f (x ′) = f (x ′, φ(x ′)), x ′ ∈ R
2.
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For 0 ≤ s ≤ 1, the homogeneous Sobolev space Ḣ s(R2) is the completion ofC∞c (R2)

in the norm

‖ f ‖2
Ḣ s (R2)

=
∫
R2
|F f (u)|2|u|2s du,

where F : L2(R2) → L2(R2) denotes the usual Fourier transform. For 0 ≤ s < 1
the Sobolev space Ḣ s(R2) is a space of functions; it is continuously contained in
L2/(1−s)(R2). For s = 1, Ḣ1(R2) is the space of functions modulo constants such that
∇ f ∈ L2(R2). For 0 ≤ s ≤ 1 we define Ḣ s(�) by

Ḣ s(�) = �−1 Ḣ s(R2),

and for −1 ≤ s < 0 we let Ḣ s(�) be the dual of Ḣ−s(�) with respect to the L2(�)-
pairing. In this notation, the content of [39, Theorem 14] is that E(�) coincides with
Ḣ−1/2(�),

E(�) � Ḣ−1/2(�).

Lemma 5.32 Suppose that ϕ and η are two compactly supported Lipschitz functions
on � such that 1− η and ϕ have disjoint support. Then

(1− η)K ∗�ϕ : E(�)→ E(�)

is compact.

Proof By duality, we may equivalently prove that

T := ϕK�(1− η) : Ḣ1/2(�)→ Ḣ1/2(�) (5.27)

is compact.ApplyingHölder’s inequality, it is straightforward to check, for f ∈ L4(�),
that

‖T f ‖L∞(�) � ‖ f ‖L4(�)

and

|T f (x)− T f (y)| � ‖ f ‖L4(�)|x − y|, x, y ∈ �.

Since Ḣ1/2(�) ⊂ L4(�), we find that T is bounded as an operator from Ḣ1/2(�) into
the zero trace Sobolev space H1

0 (Uϕ), where Uϕ is any bounded open set such that
suppϕ ⊂ Uϕ . It follows that the operator T of (5.27) is compact. ��

We now provide our final theorem.
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Theorem 5.33 let K be the Neumann–Poincaré operator of a Lipschitz polyhedron
∂�. For each vertex of ∂�, let Ki = K�i denote the Neumann–Poincaré operator of
the corresponding tangent polyhedral cone �i , i = 1, . . . , I .

Then, for λ ∈ C, K ∗−λ is Fredholm on E(∂�) � H−1/2(∂�) if and only if K ∗i −λ

is invertible on E(�i ) for every i = 1, . . . , I . That is,

σess(K ∗, E(∂�)) =
⋃

1≤i≤I

σ(K ∗i , E(�i )).

The spectra σ(K ∗i , E(�i )) have been described in Theorem 5.29.

Remark 5.34 Since K ∗ : E(∂�) → E(∂�) is self-adjoint and E(∂�) � H−1/2(∂�),
we obtain as a corollary that

σ(K , H1/2(∂�)) =
⋃

1≤i≤I

σ(K ∗i , E(�i )) ∪ {λk}k,

where {λk}k is a sequence of real isolated eigenvalues.

Proof We follow the proof of Theorem 4.21, retaining its notation.
Suppose that λI − K ∗i is invertible on E(�i ) for every i = 1, . . . , I . Then, for

f ∈ E(∂�),

‖ f ‖E(∂�) �
∑

1≤i≤I

‖ϕi f ‖E(�i ) �
∑

1≤i≤I

‖(λI − K ∗i )ϕi f ‖E(�i )

�
∑

1≤i≤I

‖ηi (λI − K ∗i )ϕi f ‖E(�i ) +
∑

1≤i≤I

‖(1− ηi )(λI − K ∗i )ϕi f ‖E(�i )

�
∑

1≤i≤I

‖(λI − K ∗)ϕi f ‖E(∂�) +
∑

1≤i≤I

‖(1− ηi )K ∗i ϕi f ‖E(�i ),

where we have used that 1− ηi and ϕi have disjoint support, and that

‖ηi (λI − K ∗i )ϕi f ‖E(�i ) � ‖ηi (λI − K ∗)ϕi f ‖H−1/2(∂�) � ‖(λI − K ∗)ϕi f ‖E(∂�).

By Lemmas 5.31 and 5.32, there is thus a Hilbert space H and a compact operator
C : E(∂�)→ H such that

‖ f ‖E(∂�) �
∑

1≤i≤I

‖ϕi (λI − K ∗) f ‖E(∂�) + ‖C f ‖H

� ‖(λI − K ∗) f ‖E(∂�) + ‖C f ‖H.

This shows that λI − K ∗ is Fredholm on E(∂�), since K ∗ : E(∂�) → E(∂�) is
self-adjoint.

Conversely, suppose that λI−K ∗i0 : E(�i0)→ E(�i0) fails to be invertible for some
i0 ∈ {1, . . . , I }. Then, by the proofs of Theorems 4.17 and 5.29, there is a singular
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Weyl sequence (wn) for λI −K ∗i0 : E(�i0)→ E(�i0), supported in a sufficiently small
neighborhood of the vertex of �i0 . We interpret (wn) as a sequence in E(∂�), tending
to 0 weakly and satisfying that ‖wn‖E(∂�) = 1 for all n, cf. Sect. 2.3.

Choosing the support ofwn appropriately,wehave the following equation inE(∂�),

(λI − K ∗)wn = ηi0(λI − K ∗)ϕi0wn − (1− ηi0)K ∗ϕi0wn .

It is easy to verify that the operator (1 − ηi0)K ∗ϕi0 : E(∂�) → E(∂�) is compact,
either by extrapolation or by arguing as in the proof of Lemma 5.32. Therefore (1 −
ηi0)K ∗ϕi0wn → 0 in E(∂�) as n →∞, since wn → 0 weakly. Next we understand
ηi0(λI − K ∗)ϕi0wn as an element of E(�i0) satisfying

ηi0(λI − K ∗)ϕi0wn = (λI − K ∗i0)wn + (1− ηi0)K ∗i0ϕi0wn .

Here (λI − K ∗i0)wn → 0 by the choice of (wn) as a Weyl sequence, while (1 −
ηi0)K ∗i0ϕi0wn → 0 in E(�i0) by Lemma 5.32.

We have shown that (λI − K ∗)wn → 0 in E(∂�), demonstrating that λ ∈
σess(K ∗, E(∂�)). ��
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