Vis enkel innførsel

dc.contributor.authorGardner, Richard J.
dc.contributor.authorHermansen, Erik
dc.contributor.authorPachitariu, Marius
dc.contributor.authorBurak, Yoram
dc.contributor.authorBaas, Nils A.
dc.contributor.authorDunn, Benjamin Adric
dc.contributor.authorMoser, May-Britt
dc.contributor.authorMoser, Edvard Ingjald
dc.date.accessioned2022-10-03T05:59:23Z
dc.date.available2022-10-03T05:59:23Z
dc.date.created2022-04-11T12:47:52Z
dc.date.issued2022
dc.identifier.citationNature. 2022, 602 (7895), 123-128.en_US
dc.identifier.issn0028-0836
dc.identifier.urihttps://hdl.handle.net/11250/3023140
dc.description.abstractThe medial entorhinal cortex is part of a neural system for mapping the position of an individual within a physical environment1. Grid cells, a key component of this system, fire in a characteristic hexagonal pattern of locations2, and are organized in modules3 that collectively form a population code for the animal’s allocentric position1. The invariance of the correlation structure of this population code across environments4,5 and behavioural states6,7, independent of specific sensory inputs, has pointed to intrinsic, recurrently connected continuous attractor networks (CANs) as a possible substrate of the grid pattern1,8,9,10,11. However, whether grid cell networks show continuous attractor dynamics, and how they interface with inputs from the environment, has remained unclear owing to the small samples of cells obtained so far. Here, using simultaneous recordings from many hundreds of grid cells and subsequent topological data analysis, we show that the joint activity of grid cells from an individual module resides on a toroidal manifold, as expected in a two-dimensional CAN. Positions on the torus correspond to positions of the moving animal in the environment. Individual cells are preferentially active at singular positions on the torus. Their positions are maintained between environments and from wakefulness to sleep, as predicted by CAN models for grid cells but not by alternative feedforward models12. This demonstration of network dynamics on a toroidal manifold provides a population-level visualization of CAN dynamics in grid cells.en_US
dc.language.isoengen_US
dc.publisherNature Researchen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleToroidal topology of population activity in grid cellsen_US
dc.title.alternativeToroidal topology of population activity in grid cellsen_US
dc.typeJournal articleen_US
dc.typePeer revieweden_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber123-128en_US
dc.source.volume602en_US
dc.source.journalNatureen_US
dc.source.issue7895en_US
dc.identifier.doi10.1038/s41586-021-04268-7
dc.identifier.cristin2016707
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal