Vis enkel innførsel

dc.contributor.authorTzounis, Lazaros
dc.contributor.authorPetousis, Markos
dc.contributor.authorGrammatikos, Sotirios
dc.contributor.authorVidakis, Nectarios
dc.date.accessioned2022-05-10T08:46:12Z
dc.date.available2022-05-10T08:46:12Z
dc.date.created2020-07-25T11:51:03Z
dc.date.issued2020
dc.identifier.citationMaterials. 2020, 13 (12), .en_US
dc.identifier.issn1996-1944
dc.identifier.urihttps://hdl.handle.net/11250/2994982
dc.description.abstractThree-dimensional (3D) printing of thermoelectric polymer nanocomposites is reported for the first time employing flexible, stretchable and electrically conductive 3D printable thermoplastic polyurethane (TPU)/multiwalled carbon nanotube (MWCNT) filaments. TPU/MWCNT conductive polymer composites (CPC) have been initially developed employing melt-mixing and extrusion processes. TPU pellets and two different types of MWCNTs, namely the NC-7000 MWCNTs (NC-MWCNT) and Long MWCNTs (L-MWCNT) were used to manufacture TPU/MWCNT nanocomposite filaments with 1.0, 2.5 and 5.0 wt.%. 3D printed thermoelectric TPU/MWCNT nanocomposites were fabricated through a fused deposition modelling (FDM) process. Raman and scanning electron microscopy (SEM) revealed the graphitic nature and morphological characteristics of CNTs. SEM and transmission electron microscopy (TEM) exhibited an excellent CNT nanodispersion in the TPU matrix. Tensile tests showed no significant deterioration of the moduli and strengths for the 3D printed samples compared to the nanocomposites prepared by compression moulding, indicating an excellent interlayer adhesion and mechanical performance of the 3D printed nanocomposites. Electrical and thermoelectric investigations showed that L-MWCNT exhibits 19.8 ± 0.2 µV/K Seebeck coefficient (S) and 8.4 × 103 S/m electrical conductivity (σ), while TPU/L-MWCNT CPCs at 5.0 wt.% exhibited the highest thermoelectric performance (σ = 133.1 S/m, S = 19.8 ± 0.2 µV/K and PF = 0.04 μW/mK2) among TPU/CNT CPCs in the literature. All 3D printed samples exhibited an anisotropic electrical conductivity and the same Seebeck coefficient in the through- and cross-layer printing directions. TPU/MWCNT could act as excellent organic thermoelectric material towards 3D printed thermoelectric generators (TEGs) for potential large-scale energy harvesting applications.en_US
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.title3D printed thermoelectric polyurethane/multiwalled carbon nanotube nanocomposites: A novel approach towards the fabrication of flexible and stretchable organic thermoelectricsen_US
dc.title.alternative3D printed thermoelectric polyurethane/multiwalled carbon nanotube nanocomposites: A novel approach towards the fabrication of flexible and stretchable organic thermoelectricsen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber16en_US
dc.source.volume13en_US
dc.source.journalMaterialsen_US
dc.source.issue12en_US
dc.identifier.doi10.3390/ma13122879
dc.identifier.cristin1820487
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal