• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Blockchain-Empowered Cluster-based Federated Learning Model for Blade Icing Estimation on IoT-enabled Wind Turbine

Cheng, Xu; Tian, Weiwei; Shi, Fan; Zhao, Meng; Chen, Shengyong; Wang, Hao
Peer reviewed, Journal article
Accepted version
Thumbnail
Åpne
Cheng (583.0Kb)
Permanent lenke
https://hdl.handle.net/11250/2990418
Utgivelsesdato
2022
Metadata
Vis full innførsel
Samlinger
  • Institutt for datateknologi og informatikk [4930]
  • Institutt for vareproduksjon og byggteknikk [706]
  • Publikasjoner fra CRIStin - NTNU [26671]
Originalversjon
10.1109/TII.2022.3159684
Sammendrag
Wind energy is a fast-growing renewable energy but faces the blade icing. Data-driven methods provide talented solutions for blade icing detection but a considerable amount of data need to be collected to a central server, which may lead to the leakage of sensitive business data. To address this limitation, this work proposes BLADE, a Blockchain-empowered imbalanced federated learning (FL) model for blade icing detection. With the help of Blockchain, the conventional FL is improved without worrying the failure of the single centralized server and boosts the privacy-preserving. A validation mechanism is introduced into the Blockchain to enhance the defense of poisoning attacks. In addition, a novel imbalanced learning algorithm is integrated into BLADE to solve the class-imbalance problem in the sensor data. The BLADE is evaluated on the 10 wind turbines from two wind farms. The experimental results verify the effectiveness, superiority, and feasibility of proposed BLADE.
Utgiver
IEEE
Tidsskrift
IEEE Transactions on Industrial Informatics
Opphavsrett
© IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit