• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for matematiske fag
  • View Item
  •   Home
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for matematiske fag
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bifurcation of Weakly Dispersive Partial Differential Equations

Vean, Jonas Pedersen
Bachelor thesis
Thumbnail
View/Open
no.ntnu:inspera:56982622:34087059.pdf (6.867Mb)
URI
https://hdl.handle.net/11250/2980258
Date
2020
Metadata
Show full item record
Collections
  • Institutt for matematiske fag [2686]
Abstract
 
 
In this thesis we explore the use of local bifurcation theory toshow existence of small-amplitude traveling wave solutions to nonlinear dispersive partial differential equations that in a sense are generalizationsof the Korteweg–de Vries and Whitham equations of hydrodynamics. Of note is the equation given by ∂_tu+L∂_xu+∂_x(u)^(p+1)= 0,whose traveling wave solutions are found to be small perturbations in thedirection of cos(ξ_0x) in the Hölder space C^{0,\alpha}(R) viewed as a bifurcation space for the problem. One of the main goals of the thesis was to provide a coherent exposition to the material needed to understand everything discussed.
 
Publisher
NTNU

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit