• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Deep Learning-Based Tool for Automatic Brain Extraction from Functional Magnetic Resonance Images of Rodents

Gulden Dahl, Annelene; Nichele, Stefano; Mello, Gustavo
Chapter
Accepted version
Thumbnail
Åpne
Pontes Filho (307.6Kb)
Permanent lenke
https://hdl.handle.net/11250/2979451
Utgivelsesdato
2021
Metadata
Vis full innførsel
Samlinger
  • Kavliinstitutt for nevrovitenskap [378]
  • Publikasjoner fra CRIStin - NTNU [41867]
Originalversjon
10.1007/978-3-030-82199-9_36
Sammendrag
Removing skull artifacts from functional magnetic images (fMRI) is a well understood and frequently encountered problem. Because the fMRI field has grown mostly due to human studies, many new tools were developed to handle human data. Nonetheless, these tools are not equally useful to handle the data derived from animal studies, especially from rodents. This represents a major problem to the field because rodent studies generate larger datasets from larger populations, which implies that preprocessing these images manually to remove the skull becomes a bottleneck in the data analysis pipeline. In this study, we address this problem by implementing a neural network-based method that uses a U-Net architecture to segment the brain area into a mask and removing the skull and other tissues from the image. We demonstrate several strategies to speed up the process of generating the ground-truth of the dataset using watershedding, and several strategies for data augmentation that allowed to train robustly the U-Net to perform the segmentation. Finally, we deployed the trained network freely available.
Utgiver
Springer
Opphavsrett
This is the authors' accepted manuscript to a chapter published by Springer. Locked until 7.8.2022 due to copyright restrictions.

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit