• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The Theory of Bond Graphs in Distributed Systems and Simulations

Skjong, Stian; Pedersen, Eilif
Chapter
Thumbnail
View/Open
Skjong (366.5Kb)
URI
https://hdl.handle.net/11250/2978020
Date
2016
Metadata
Show full item record
Collections
  • Institutt for marin teknikk [2862]
  • Publikasjoner fra CRIStin - NTNU [26648]
Original version
Karnopp, Dean C.; Granda, Jose J. [Eds.] 2016 International Conference On Bond Graph Modeling and Simulation - ICBGM'2016 p. 147-157 Simulation Series, Society for Modeling & Simulation International ( SCS ), 2016  
Abstract
The bond graph theory provides a firm and complete strategy for making mathematical models and are used in this work to obtain a good relation between connectivity, causality and model fidelity in distributed systems. By distributing a system more computational power is available which makes it

possible to increase the model fidelity in large systems without increasing the time to solve the total system. Also, more complex models with causality switching properties may be used for simplifying the connectivity problem between distributed models and for representing changing dynamics that also affects the model causality.

Stability of distributed systems are dependent on both solver stability and dynamical stability, when neglecting the stability results based on cascaded systems with certain passivity properties. For linear distributed systems solver with fixed step size solvers a stability criterion involving the system dynamics, local solver time step and global synchronization time step can be formulated. In this work a stability criterion for linear distributed systems solved with the Euler integration method will be derived and a hybrid causality model, representing a small power plant, will be used to test the stability criterion.
Publisher
SCS

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit