• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Common approaches to find the energy saving potentials for the Norwegian residential buildings: a review study

Kristiansen, Tobias; Jowkar, Mina; Temeljotov Salaj, Alenka
Chapter
Published version
Thumbnail
Åpne
Kristiansen (1.257Mb)
Permanent lenke
https://hdl.handle.net/11250/2926515
Utgivelsesdato
2021
Metadata
Vis full innførsel
Samlinger
  • Institutt for bygg- og miljøteknikk [5096]
  • Publikasjoner fra CRIStin - NTNU [41778]
Sammendrag
Building sector is shown as a huge energy consumer worldwide. Therefore, a thorough understanding of energy performance in buildings is essential to propose and implement sustainable strategies for the future plans; and consequently, reach the low carbon emission targets. This study aims to investigate an approach to gather or generate large-scale energy data for Norwegian residential buildings. Also, approaches to visualize data and implement digital information tools are reviewed in this study. A qualitative literature survey was conducted to evaluate the relevant approaches/strategies for large data collection in the building sector. Results confirmed that building energy models could be suitable for generating consistent and detailed data. Elaborate and simplified engineering methods, statistical methods, neural networks and support vector machines, are widely used models. A hybrid model combining simulation-based techniques and machine learning algorithms shows promising results. An energy model class which simulates the physical relationship of processes at the building or end-use levels, which also utilizes cloud computing, could help generating generic energy models based on key performance indicators. The dataset can then be trained in a machine learning algorithm, which utilize historical information to attribute building energy use to particular end-uses and can predict different scenarios for the Norwegian building stock based on cadastre data and statistical data. The outcome of this study can help to introduce approaches to find the energy saving potentials in Norwegian buildings and present the suitable refurbishment strategies for future planning.
Utgiver
Institute of Real Estate Studies Ljubljana

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit