• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Towards a Generic Approach of Quantifying Evidence Volatility in Resource Constrained Devices

Sandvik, Jens-Petter; Franke, Katrin; Årnes, Andrè
Chapter
Accepted version
Thumbnail
View/Open
Sandvik (1.394Mb)
URI
https://hdl.handle.net/11250/2827042
Date
2021
Metadata
Show full item record
Collections
  • Institutt for informasjonssikkerhet og kommunikasjonsteknologi [2809]
  • Publikasjoner fra CRIStin - NTNU [41957]
Original version
10.1007/978-3-030-60425-7_2
Abstract
Forensic investigations of the Internet of Things (IoT) is often assumed to be a combination of existing cloud, network, and device forensics. Resource constraints in many of the peripheral things, however, are affecting the volatility of the potential forensic evidence, and evidence dynamics. This represents a major challenge for forensic investigations. In this chapter, we study the dynamics of volatile and non-volatile memory in IoT devices, with the Contiki operating system as an example. We present a way forward to quantifying volatility during the evidence identification phase of a forensic investigation. Volatility is expressed as the expected time before potential evidence disappears. This chapter aims to raise awareness and give a deeper understanding of the impact of IoT resource constraints on volatility and the dynamics of forensic evidence. We exemplify in which way volatility can be quantified for a popular operating system and provide a path forward to generalize this approach. The quantification of the volatility of potential evidence helps investigators to prioritize acquisition and examination tasks to maximize the likelihood of collecting relevant evidence from resource-constrained devices. Our work contributes to establishing a scientific base for evidence volatility and evidence dynamics in IoT devices. It strengthens methods for on-scene triage, event reconstruction, and for assessing the reliability of evidence findings.
Publisher
Springer
Copyright
This is the authors' accepted manuscript to an article published by Springer. Locked until 10.12.2022 due to copyright restrictions.

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit