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Abstract

Forensic investigations of the Internet of Things (IoT) is often assumed to be a combination of existing
cloud, network, and device forensics. Resource constraints in many of the peripheral things, however,
are affecting the volatility of the potential forensic evidence, and evidence dynamics. This represents a
major challenge for forensic investigations. In this chapter, we study the dynamics of volatile and non-
volatile memory in IoT devices, with the Contiki operating system as an example. We present a way
forward to quantifying volatility during the evidence identification phase of a forensic investigation.
Volatility is expressed as the expected time before potential evidence disappears. This chapter aims to
raise awareness and give a deeper understanding of the impact of IoT resource constraints on volatility
and the dynamics of forensic evidence. We exemplify in which way volatility can be quantified for a
popular operating system and provide a path forward to generalize this approach. The quantification
of the volatility of potential evidence helps investigators to prioritize acquisition and examination
tasks to maximize the likelihood of collecting relevant evidence from resource-constrained devices.
Our work contributes to establishing a scientific base for evidence volatility and evidence dynamics
in IoT devices. It strengthens methods for on-scene triage, event reconstruction, and for assessing
the reliability of evidence findings.

1 Introduction
As the Internet of Things (IoT) gains traction, the number of criminal cases involving IoT systems is
increasing. The increase in IoT ubiquity in all aspects of daily life will extend both the dependence on
these systems and increase the number of devices used for crimes. As more IoT systems will sense their
environments, they will also act as new sources of evidence for activities in their environment. From these
IoT systems, data and information are in a fast flux, and a crime investigator has to prioritize his or her
efforts to collect the relevant data as evidence as long as it exists for the criminal case. A formal approach
to volatility quantification requires a well-defined terminology of evidence dynamics and volatility. In this
chapter, we are defining key concepts and motivating the formal approach, which will be detailed in the
remainder of the chapter.

Challenges introduced by IoT systems for digital forensics are abundant [1]. A subset of IoT forensic
challenges that affect volatility are summarized as follows: (i) The ubiquity of their presence, (ii) the
resource-constraints, (iii) the lack of interfaces for forensic data collection, and (iv) the data process flow.
The data process flow makes data generated by a device hard to locate and to collect, and it can change
the data during its lifetime in the system. The set of data that is collected from the system and is used
in the investigation is regarded as evidence. The changes to data that will be used as evidence are part of
the evidence dynamics. Evidence dynamics is a term used for all changes a piece of evidence experiences
from the creation of the data to the case has been presented in court [2].

Volatility is a term that describes the time interval before evidence disappears, and the term will be
defined in this chapter. The disappearance of evidence is a change that happens to it, and it can thus be
seen as a subset of evidence dynamics.

It is not only the IoT devices that are resource-constrained but also forensic investigations are limited
by resource constraints. This is a double burden. The resources that are available for an investigation
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are finite, and this includes both manpower, time, and equipment. An investigator with access to several
possible sources of evidence needs to prioritize between these to optimize the probability of finding the
most valuable evidence. This prioritization task is often referred to as triage. Roussev et al. defined
triage as “[...] a partial forensic examination conducted under (significant) time and resource constraints”
[3].

During triage, the investigator needs reliable and objective sources of information to prioritize the
data and evidence collection. Given the available resources for the forensic investigation as well as the
evidence dynamics, this prioritization is done to maximize the probability of finding relevant data and
evidence. Objective and reliable sources of information about the IoT system can help reduce human
errors due to cognitive biases a human investigator is susceptible to.

To overcome the misconception that no evidence can be found in resource-constrained peripheral
devices, we are aiming to provide an objective measurement to determine the time window where relevant
data is most likely to exist, despite its evidence dynamics. This will increase the confidence of the
investigator that evidence exists and where it can be found. The knowledge about the likelihood of
some evidence is still present in the system after a given time can be of help when prioritizing between
collecting data from two different devices that both might contain evidence, but where one has much
lower volatility than the other.1

This chapter focuses on the volatility of the evidence, and how we can measure it, which is the
objective measure as motivated above. Our contributions are:

• A model of the volatility, to better understand the influencing elements of volatility, with the
operating system (OS) Contiki as an example.

• The use of statistical tools to measure the volatility, which borrows from the field of dependability
and reliability analysis.

The model of the volatility is a construct to split the analysis of the volatility into smaller, well-defined
elements that individually contribute to the volatility for the whole IoT system. The statistical method
is a quantification of the contributions of both the individual and the combined elements in the volatility
model of the IoT system.

Section 2 describes related work in volatility and how this term has been used. Section 3 introduces
the concepts of data volatility and information volatility, together with a model for both data volatility
and information volatility. Section 4 introduces the use of statistical methods for measuring the volatility.
Section 5 uses the Contiki OS as an example of how the model can be used. Section 6 summarizes and
concludes this chapter together with discussions on further work.

2 Related work
The research in volatility has been focused on the acquisition process, and how to collect evidence in a
forensically sound matter, such that the collection process does not change or otherwise overwrite relevant
evidence, maintaining evidence integrity. In the case of such changes happening, the acquisition should
minimize the number of changes and document what has changed as a part of the chain of custody. This
leads to the concept of order of volatility (OOV).

The IETF Request For Comments (RFC) 3227, “Guidelines for Evidence Collection and Archiving”, is
a best practice guide for collecting and preserving evidence from computer systems [4]. In this guide, the
order of volatility is listed as an important aspect of evidence collection, as the evidence should preferably
be collected from the most volatile evidence, and proceed with the less volatile evidence. The order of
volatility thus forms the order for prioritizing evidence collection. Examples of evidence in this RFC,
ordered in decreasing volatility order, are registers and cache; routing table, ARP cache, process table,
kernel statistics and memory; temporary file systems; disk; remote logging and monitoring; physical
configuration and topology; and archival media.

The order of volatility is an assessment tool, and during an investigation, the investigator can decide
to rather decrease the risk of overwriting less volatile data on the cost of not collecting more volatile
data. As an example, the investigator might want to turn an alarm central off, so that the non-volatile
memory won’t fill up with warnings, overwriting relevant data from the investigated incident [5].

Ruan and Carthy discuss the order of volatility for cloud providers, and they defined the order of
volatility to be, in decreasing order: Service layer artifacts, abstraction layer artifacts, and physical layer

1This assessment can go both ways. Either prioritize the high volatility device to collect data before it disappears, or
prioritize the low volatility one because there is only time to collect data from one of the devices.
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artifacts [6]. This is a more generic model than the one defined in RFC 3227 but covers a variety of
system architectures.

Dykstra and Sherman researched available tools and the trust challenges that arise with cloud com-
puting and the forensic collection of data from Infrastructure-as-a-Service solutions [7]. The authors
described a model with layers of trust in the system where evidence collected from higher layer abstrac-
tions such as applications running in a virtual machine need to trust more of the system than, e.g., packet
capture at the hardware level. This idea behind the layers in the system as layers of trust is similar to
the discussion in this paper on the storage stack layers, but in this chapter, we focus on the layers from
a volatility perspective.

The trust issue and the “changeability” of data have also been the focus for Casey, where he discusses
the need for the forensic examiner to detect, quantify, and to compensate for unforeseen changes to the
system caused by errors or loss [2].

Some authors have described the challenges with volatile data in systems. Zulkipli et al. point out
that the volatility complexity is higher in IoT systems than in other systems, and they see a need for
new techniques for filtering and collecting data in IoT environments [8].

Montasari and Hill also discuss the challenges with volatile data in IoT systems, especially with short-
lived data in resource-constrained devices together with cloud aggregation and processing of data in the
system [9]. The resource-constriction means less memory and, thereby, more volatile data. The cloud
aggregation would lead to challenges in the chain of custody, as it will be harder to track the pathway of
the data in the system and describe the changes that have happened to it.

In a paper by Sandvik and Årnes, the volatility of the registers keeping the current clock state under
low power conditions was discussed. Testing showed that for some devices, the registers kept the state
up to 10 seconds while the processor was connected to a lower voltage than the processor could operate
normally under, and it did not have enough power to run the operating system [10]. The results showed
the evidence dynamics, as the low power affected registers holding the clock value, which made the clock
of the operating system to show the wrong time when power was restored.

3 Volatility in IoT devices
Any stored data will disappear after an amount of time, whether it is stored in electrically powered
circuits or engraved on stone tablets. How fast the data disappears is obviously different for these two
technologies, and this can be denoted as the volatility of the data. An intuitive attribute of the volatility
is that the faster information disappears, the higher the volatility of the data, but to show how volatility
should be defined, we need to go into the details of both what we mean with “disappear” and what we
mean with “data”. Another intuitive attribute is that the volatility is in some way quantifiable and that
we, in general, don’t know exactly when the data will disappear, so there are probabilities involved.

From the field of information theory, there is a distinction between the terms information and data.
The information source transmits messages that contain some information, and these messages are en-
coded in data [11, 12]. This terminology is adopted here, and in our case, we can view the information
transmitted as the messages about the events that affect the system, and the data is stored in bits in
various physical locations of the IoT system.

With this backdrop, data volatility is introduced here as the disappearance of data in the system,
and the information volatility is introduced as the disappearance of the information about an event, or
set of events in the system. Figure 1 shows the difference between these two terms. Data volatility only
concerns the specific data and copies of that data found in the system. One example of this might be
a file that is stored in a device and then copied to other devices in the system automatically. How fast
the data content of this file disappears is data volatility. As the information is stored in the system
as data, information volatility is dependent on the data volatility and can be viewed as a superset of
data volatility. Information volatility takes into account all data that can be used for reconstructing an
event in the system. Even though some data that are stored will disappear, there might still be enough
information in the system to reconstruct an event. If data is disappearing, there is at one point in time
not enough information to reconstruct an event, given the defined certainty, and this is the point where
the information about an event has disappeared.

3.1 Data volatility
Data volatility is usually what most people refer to when mentioning volatility. The order of volatility,
which is commonly used as a reference, is a description of the ordering of data lifetime between the
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Figure 1: The difference between data volatility and information volatility. Green signifies existing data,
while red signifies inaccessible data. While data volatility focuses on the existence of a specific piece of
data, here labeled “Data 1”, information volatility focus on all data that can be used for reconstructing
an event.
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Figure 2: A generic IoT system with data stored in several locations. Each of the elements in the figure
have their own internal system for processing and storing the data in question.

various storage types and locations, while the term volatile memory is a term used for a type of memory
where data disappears as the electric power is removed.

IoT systems can, in many cases, be considered distributed systems, where information about events is
stored in many locations. This should also be considered when assessing the volatility of the data. Figure
2 shows a generic IoT system, where data can be cloned into several subsystems and several locations
in each subsystem. It is important to establish the data locations that are considered in the volatility
model, whether we consider data as it is stored in one location or all copies of the same data as it is
stored in the system.

The simplest model is where data is contained in one storage location. This can be a timestamp in
the metadata of a file or the contents of a file. The time it takes before the particular data is unavailable
for the investigator can be considered the volatility. For this, we need to consider the time it takes
before a file, or the data is deleted, and the time it takes before the areas in memory (either volatile or
non-volatile) containing the data are overwritten. An example of this might be that deletion and erasure
of a file. The information about the file and its content is encoded in data found in both RAM and Flash
storage, and while the data disappears from the process memory and file system abstraction layer, the
contents are still found in a page in the flash memory.

A more complex model is where copies of the data are found in several locations in the system. A
system in this regard can be a single device consisting of CPU, RAM, and flash memory, or it can be
a whole IoT system consisting of several IoT devices, servers, routers, cloud storage, and/or computers.
Copies of the data can be found in several places in a system, and it is intuitive to think that the storage
location with the lowest volatility is the one contributing the most to the overall volatility. If the contents
of a file have been overwritten, there is still a probability for the original pages of the file to be located
in the flash memory, as the wear leveling algorithm will write to other pages when the file is modified.
Even if the pages are erased with a TRIM command, a command for wiping non-allocated blocks in a
flash memory device, the data might still be in a page in a bad block, and therefore not erased. The file
can also have been copied to other devices or a cloud service.

If we define the data volatility as the time of disappearance of all copies of the data, the probability
for finding at least one of the copies of said data is dominated by the storage location with the lowest
volatility. The “disappearance” of data is not a sharp boundary between the existence and non-existence
of the data. On the one hand, we can think of disappearance as the point where the data does not exist
anymore, or is lost to the mythical place together with single socks from the washing machine. The data
is erased, and there are no theoretical methods of reconstructing the data from the storage medium.
On the other hand, we can view the disappearance of the data as the point where the data becomes
inaccessible for the investigator.

The inaccessibility of the data requires another set to describe the volatility, namely the methods
and tools available for the investigator for acquisition and examination of the data. There are many
ways data can be collected from a system, from documenting status indicators on a user interface to
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Table 1: The elements of the volatility model.
Model element Type Description
Storage
abstraction
layer, L

Physical Physical, or close to physical storage layers.
Logical Data structures and access methods for the logical

storage layer structure in the system.
Application The layer that processes the data that are encoded

from the events. The application activity functions,
A, works on this layer.

Events, E External External events affecting the system
Internal Internal events in the system, such as delayed re-

sponse to external events or timed events.
Application ac-
tivity functions,
A

Applications The applications that handles the data creation,
modification and deletion, together with their rates
and probability distribution.

Storage
management
functions, M

FTL Software and firmware mapping the application
storage to physical storage.VMM

Memory device
reliability, D

RAM All devices that contain memory in the system.
Each type of memory has its own reliability
function and dependencies for failure-free service.

SSDs
Tape drives
HDDs

Environment, S
Configuration The current configuration of the system.
Physical envi-
ronment

The physical environment affecting the system.

Operational en-
vironment

The external operational environment, usage pat-
terns, attack intensity, etc.

desoldering and reading the flash chip or using JTAG to dump the memory. Each of these methods has
access to a subset of the data that exists in the system. If the investigator does not have the tools for
performing a JTAG acquisition, the data is inaccessible for the investigation. The definitions of order of
volatility as described in Section 2, often mentions CPU registers and CPU cache as the most volatile
storage locations, but there are no practical ways of accessing these for an investigator, as any use of the
processor would overwrite the registers and many of the cache lines.

For an investigator, data disappearance means that data becomes inaccessible for the investigation,
and we define the term data disappearance as data that becomes inaccessible for a given acquisition
method or technique. The data will, therefore, have different volatility depending on where the data is
collected from in the system, which translates to the acquisition method.

3.2 A model for data volatility
There are many processes and variables in a system that affect volatility. To split the challenge into more
manageable parts, we introduce a model to ease the analysis of data volatility.

The generalized data volatility model, VD, is introduced here as a 6-tuple given by:

VD = (L,E,A,M,D, S) (1)

Where L is the various storage system abstraction layers. E is the set of events that has happened in
the system, both internally triggered events and external events. A is the functions of the applications
producing, modifying and deleting data, M is the functions of the storage management software and
firmware mapping the application data to the physical storage devices, and D is the set of individual
memory devices in the system with their physical reliability functions. S is the environment of the data
storage devices in the system, including the IoT system with its hardware, software, configuration, the
physical environment, and the operational environment. Table 1 shows this model with a short description
of the elements.

In short, L is the structure of the data pathway in the system; E is the set of events; A, M, D are
functions that operate on the data; and S is the environment in the background of the system. The
relationship between these elements of the volatility model is shown in Figure 3 and is described in more
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Figure 3: The relation between the elements of the volatility model. The stack is different depending on
both the application layer and the physical storage. Note that there is another stack for the data as it is
forensically collected, and this varies with collection method.

detail in the following subsections. Each of the elements the storage stack consists of contributes to the
volatility of the data. The challenge is to find the amount and type of contributions from each element,
so the total volatility of the data can be calculated or approximated if we choose to disregard elements
with an insignificant contribution.

3.2.1 Storage abstraction layers

The storage abstraction layers, L, is the set of storage abstraction layers for the devices in the system.
This is in the model for two reasons: It makes it possible to analyze the data loss functions from each
layer, it is also used for describing which layer the acquisition method uses together with the volatility.

The OSI model of networking protocols describes the abstraction layers for how data can be transmit-
ted over networks, where each layer has a defined role in the addressing and handling of the data packets.
This model is not followed to the letter in contemporary network protocols, but it is still a good tool
for analyzing network protocols and for learning the abstraction layers in any network protocol stack. A
similar structure for storage abstraction layers can be defined.

The storage abstraction model defined in this work specifies how each level in the storage hierarchy
handles the storage of information from the application storage layer through the file system abstractions
and to the storage in the physical medium. The stack will be different for different applications and
physical storage locations, as an application may operate on different levels of the storage stack.

The two layers that are always present are the application layer at the top of the stack and the
physical layer at the bottom. The application layer is the data that is an interpretation and encoding as
a response to events. The encoded data is then stored in a data structure, together with other information,
the operating system will keep the process data in other structures, and the data will be stored in the
physical layer, first in physical RAM, before it can be stored in physical flash storage.

These layers define where data can be forensically collected. Physical acquisition is a term used
for forensically collecting data from the physical, or a layer close to the physical layer. Sometimes to
forensically collect data from a hardware-near layer, such as the flash translation layer (FTL), is called
a pseudo-physical acquisition [13]. The forensic collection of data from any of the other storage layers is
often referred to as a logical acquisition, regardless of the exact storage layer that is affected.

Various memory technologies have different names and number of abstraction layers, but at least three
layers are consistent among the technologies: The physical layer, the addressable-to-physical translation
layer, and the application layer. Table 2 shows examples of a DRAM and a Flash memory layer structure.
In RAM, the application stores data in the process memory, and the buffers holding the data can be copied
otherwise managed during its lifetime. Beneath the in-process memory handling, the Virtual Memory
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Table 2: Example storage abstraction layers and functions for DRAM and Flash memory.
Layer DRAM Flash
Application Sensor reading Sensor reading
Translation layers In-process memory man-

agement
File system driver

A2P translation Virtual Memory Manager Flash Translation layer
Physical SDRAM cell Floating gate transistor

Manager (VMM) handles memory pages and can move the memory pages in and out of a swap file, or
other memory modules in case of a NUMA architecture.2 For the Flash memory layer, the data is first
in RAM, and as the file is written to disk, the file system driver will decide where the file is to be written
in the address space, and the flash translation layer will move the data from the linear address space to
store it in the physical flash pages and keep an index of the corresponding logical address.

It is important to note that the number of layers is dependent on several factors: How many processes
or functions are handling these data and the number of abstraction layers within one architecture. The
data producer stack can also be different from the collection stack for the same physical data. This can,
e.g., be when an IoT device does write directly to flash, but the interface for collection is to connect a
computer to the device and logically acquire the data via en Media Transfer Protocol (MTP), which adds
a layer of abstraction that the writing did not go through.

3.2.2 Events

The events, E, is the set of events affecting the system, often initiated by some external interface to
the system, as an IoT system is typically an open system. Events originating in the system can be
events triggered by a timer or triggered by a state change of the system. The events are often what an
investigation tries to reconstruct from the stored data. External events are events that are triggered from
outside the system, while internal events are events originating from the system. The events get encoded
into data in the storage abstraction stack and end up in one or more physical storage locations.

3.2.3 Application activity function

The application activity function, A, is the set of functions that processes the information and translate
events into the storage system. It handles creation, modification, and deletion of data from the top layer
of the storage abstraction layer stack: A : E → Ltop. One event can trigger several of these functions.
An example of an application activity function is a program running on an IoT device, analyzing sensor
inputs, recording sudden changes, and deletes the data after one week.

As the application layer is the data encoding of the external inputs generated by an event, this layer
will always be present, and the application activity function will always map events into the application
layer. An example if this is log rotation, where the oldest log file is deleted while a new one is created,
and the other log files are renamed. Another example is the reading sensor inputs and processing these
values. There might also be unexpected events, such as a sudden power failure that affects RAM contents,
and non-volatile content that is in the middle of a non-atomic write operation.

3.2.4 Storage management functions

The storage management functions, M , are the functions mapping the data between the intermediate
layers in the storage abstraction stack: M : Lx → Ly. One example of this is the flash translation layer,
which reorganizes the logical storage address to the flash memory pages. These functions can copy data
between locations in a lower layer transparent for the layer above. From the application’s view, there
is only one occurrence of the data, but it may exist at several physical locations. The deletion of data
from the application will also make the data inaccessible for the application layer, but the data might
still exist in the physical medium.

The pathway for the data between the application layer and the physical layer can be different de-
pending on the application, the data, and the physical layer, so the storage management functions will
not necessarily be the same for all data in a system.

2Non-Uniform Memory Access.
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3.2.5 Memory device reliability

The memory devices failure probability, M , is the failure function of the physical storage locations of the
data. Hardware failures of a memory device will render a part or all of the data inaccessible and thus
impact volatility. We can define at least two different aspects of this. The first is the reliability under
normal operation; the other is the reliability after an event in the system affecting the memory device
has happened. An example of this is the clock registers when losing power. Sandvik and Årnes reported
a retention time for the value in the clock register of up to 10 seconds after an abrupt power loss [10].

Typically, each device will have a failure probability distribution or reliability function. This operates
on the lowest level of the storage abstraction layer stack and gives the volatility for the stored data in
the absence of other events affecting the data.

3.2.6 Environment

The environment of the system, S is the parts of the system environment that can affect the volatility
of the data apart from the direct events. The physical environment can impact the lifetime of the
components; the radio environment can affect communications; the digital operating environment shows
the attack base rate, or how hostile the digital environment is. The environment can change from one
state to another or show cyclical changes over time.

3.3 Information volatility
From an investigator’s point of view, the data loss in a system is not the most critical part of the
investigation in itself, but rather that the amount of information available should be enough to reconstruct
events with a given confidence. While some data might disappear, there might be other data that can
be used for reconstructing the same events. Information about an event is often encoded by several
application functions, spread over many pieces of data, and stored in several locations, as shown in
Figure 1.

Information volatility is the probability for enough data to be present to reconstruct events after a
period. As data is needed for decoding the information, the data volatility, as discussed, is an important
part of, and can be considered a subset of information volatility.

A model for information volatility can be defined as:

VI = (VD, T, C) (2)

Where VD is the set of data that the event is decoded into, T is the threshold for the certainty or
confidence, that is needed to reconstruct the event, and C is the decoding function that interprets the
data into information about the event.

3.4 Forensic resources
The volatility model, as described, focuses on the technical part of data and information volatility. For
this to be relevant for an investigator, we also have to comment on the socio-technical perspective that is
the human and organizational aspects of the investigation. The resource-constraints to the investigation
itself is a burden that adds to the resource-constraints of the devices in an IoT system.

To get access to the data or information stored, the investigator is dependent on resources. This can
be both personnel, time, acquisition tools, storage space, or knowledge. The available resources affect
both the amount and the quality of the collected and examined data. The equipment and knowledge
decide the type of acquisition that can be performed, which again decides which memory devices that
can be acquired and the layer of the storage abstraction stack that the data can be acquired from.
As the volatility of data has to be assessed based on the storage layer from which it is collected, the
available resources do affect the perceived accessibility and, thus, the perceived volatility of the evidence.
The resources are, however, not a part of the model, but is considered a part of the limitations to the
investigation.

4 A statistical approach to data volatility
The term volatility has so far been used to describe the time interval before some data becomes inaccessible
to the investigator. To quantify the volatility so it can be used for predicting the probability of finding
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relevant evidence after a time, a statistical model is needed. We will borrow some methods from reliability
and dependability analysis.

We identify that the reliability of a system, or the probability that the system fails within a given
period, is similar to the concept of volatility, where the volatility can be viewed as the probability for the
evidence to become inaccessible within a given period. The volatility is thus the reliability of data, where
the reliability analysis’ concept of non-repairable failure is the volatility’s data inaccessibility. As discussed
in Section 3, the volatility is dependent on the particular component in the storage stack in which the
evidence collection takes place. This means that the probability distribution can vary, depending on the
acquisition method, and a volatility function is valid for a particular element in the storage stack.

The reliability function, R(t), is a function that describes the probability that the system has not
failed at time t. For a steady state system the reliability function is given by: R(t) = P (TF > t), where
TF is the time to failure. Instead of time to failure, we can use the term time to inaccessibility for data
and define a volatility function as the probability of the data being inaccessible at time t:

V (t) = P (TI > t) (3)

where TI is the time to inaccessibility. The mean time to inaccessibility (MTTI) can then be expressed
similar to the mean time to failure (MTTF) as:

MTTI =

∫ ∞
0

V (t) dt (4)

The actual distribution of the volatility function is not generally known, as many variables affect the
exact distribution, such as the application’s memory and file system operation distribution, encryption,
the allocation strategy of the file system, artifacts of the physical storage medium, reboots, or system
failures. The model in Section 3 does, however, give us some idea about the contributions to the volatility
from the various parts of the system. When the data is deleted from the application is dependent on
the application function, and the physical layer is dependent on the reliability of the memory chip. The
intermediate management layers can also hide or copy data, as we saw in the model description.

To model the volatility, we have to find the corresponding probability distribution function (PDF).
Several distributions are used in reliability analysis, and these are candidates for volatility analysis. The
distribution can be estimated by empirical testing of the system and matching the PDF, and analytically
by assessing all contributing factors to the volatility. Two commonly used PDFs are the Exponential
distribution and the Weibull distribution, the former is popular because of its simplicity, the latter
because of its flexibility. The distributions and are described in more detail below, together with the
motivation of using them.

4.1 Exponential distribution
The exponential probability distribution is a simple probability function that is popular because of its
simplicity but is not always a good approximation of the reliability function [14]. The exponential
distribution works well for independent events, has a constant intensity, and a memoryless property,
which can be true for external events in the volatility model described in Section 3.2.2. The probability
distribution function has one parameter, λ, which is the rate of the data deletion. The distribution is
given by:

f(t, λ) = λe−λt (5)

The cumulative distribution function is given by:

F (t) = 1− eλt (6)

Figure 4 show examples of the PDF and the CDF for the exponential distribution for various values
of λ. A λ of 0.1 means a rate of 0.1 events per unit of time, and 0.01 means 0.01 events per unit of time.
This can be, e.g., an internal event like a garbage collection routine, happening every 100 seconds on
average, which gives a λ of 0.01 events/s. The mean of this distribution is λ−1 and the reliability function
for this distribution is given by R(t) = e−λt. This can be a good description for the events encoded by the
application activity function, as external events might be modeled as happening at a constant intensity,
triggering modifications and erasure of data in the file system.
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Figure 4: Examples of the exponential probability and cumulative distribution functions.

4.2 Weibull distribution
The Weibull distribution is another common distribution used for modeling reliability [15]. It has two
parameters that can adjust the shape of the distribution, α and γ, which are called the scale parameter
and the shape parameter, respectively. The flexibility of the function lets it approximate several other
distributions. Depending on the shape parameter, it can model falling (γ < 1), steady (γ = 1), or rising
(γ > 1) failure rates.

This distribution is often used to model physical components’ failure rate, as the failure from wear of
the components is not constant over time, but changes with the age of the component. Flash memory in
SSD storage devices is an example of a failure distribution closely resembling a Weibull distribution [16].
This can, therefore, fit the physical reliability function in the volatility model, as described in Section
3.2.2.

The probability distribution can be parameterized in several ways, two of them are given below:

f(t, γ, α) =
γ

t

(
t

α

)γ
e−( tα )

γ

(7)

f(t, k, λ) = kλ(λt)k−1e−(λt)
k

(8)

When γ = 1, this distribution is identical to the exponential distribution, with λ = α−1.
The cumulative distribution function is given by:

F (t, γ, α) = 1− e(
t
α )

γ

(9)

Figure 5 shows examples of the Weibull distribution and the cumulative distribution function for a
few values of γ and α. For γ = 1, the plot is equal to an exponential distribution. As the shape and
scale parameters can’t easily be decided analytically, the parameters often are estimated by empirical
observations and the probability distribution fitted to the data. See also Section 4.4. The mean of the
distribution is given by αΓ

(
1 + γ−1

)
, where Γ(x) is the Gamma function, which for natural numbers is

Γ(N) = (N−1)!, and a slightly more complex definition for non-natural numbers: Γ(z) =
∫∞
0
xz−1e−x dx,

where z ∈ C and <(z) > 0. The reliability function for this distribution is given by R(t) = e−( tα )
γ

.
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Figure 5: Examples of the Weibull distribution and cumulative distribution functions for some values of
γ and α.
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Figure 6: Components in series, in parallel, and hybrid connection.

4.3 Series and parallel systems
The storage system can be seen as a system consisting of elements connected both in series and parallel.
This is similar to the block model used for calculating reliability in a compound system [15]. The system
can be viewed as such a block model to ease the analysis. Figure 6 shows such a block model of components
attached in series and parallel. The volatility function for these connections is given by:

Vseries(t) =
∏
i

Vi(t) (10)

Vparallel(t) = 1−
∏
i

(1− Vi(t)) (11)

The storage management functions are, in most cases, connected in series. If data is duplicated,
there will be a parallel structure in the data pathway. The system’s volatility can thus be calculated by
combining equations 10 and 11 following the block structure of the system components.

4.4 Probability distribution fitting
Finding a probability distribution and the associated parameters that best fit the observed data, and
measuring the goodness of fit, is known as probability distribution fitting. The fitting process should
ensure that the model closely fits the observations and that the model selection can be explained.

Distribution fitting can be seen as two different tasks. The first is to find the optimal parameters
for a given distribution that matches the observed data, and the other is determining how good the
distribution fits the observed data.

Several software packages can help to fit distributions and select optimal parameters. One such
software package is the library fitdistrplus for the statistical computation and graphics software R.3 Both
R and the fitdistrplus library is free4 software. Sagemath, Matlab, and Mathematica also have distribution
fitting functionality.

To measure the goodness of the fit, the observed data has to be compared to the hypothesized
distribution, and a test of this hypothesis, that the hypothesized distribution explains the observed data
is therefore needed. There are several tests for this, each with their assumptions about the data being
observed. Among the tests often encountered, are χ2-test for discrete data and Kolmogorov-Smirnov test.

5 Example: Contiki-NG
As an example of the storage stack of a resource-constrained IoT device, we can use the Contiki operating
system. Contiki and its successor, Contiki-NG, is an operating system for resource-constrained IoT devices
[17]. Contiki is built around an event-driven kernel, and utilize loadable modules and services. The whole
operating system is about 100 kB, and need at least 10 kB of RAM to run.5 According to Eclipse

3https://www.r-project.org, visited 2020-07-01.
4Free as in beer and speech.
5https://github.com/contiki-ng/contiki-ng/wiki, visited 2020-07-08.
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Figure 7: Cooja running a simulation.

Foundation’s annual developer survey, about 5 % of the IoT developers were using the Contiki operating
system for their projects [18].

For embedded devices, the acquisition of running RAM can be a challenge in investigations, but non-
volatile memory is easier to acquire, as the contents still are present after the power has been removed.
The non-volatile storage is managed by the Coffee File System, a file system that is both minimalist
and designed for flash memory devices. This section, therefore, focuses on the file-system specific part
of Contiki. From a volatility perspective, the theory is similar for RAM data, but the specific memory
allocation methods need to be taken into account.

Some advantages from a research perspective of using Contiki as a case study is that the Cooja
simulator that comes with the OS can simulate various types of networks and configurations and also
dynamic environments. It can both emulate specific micro-controllers and run native code on the host
architecture. Contiki/Cooja also implements 6LoWPAN and other protocols that are used in IoT systems.
Figure 7 shows a screenshot of a running simulation.

The Coffee file system has been designed to run on resource-constrained nodes and to include wear-
leveling techniques. Because of the resource constraints, the file system has simplified many operations
that we take for granted in a general-purpose file system. It does not contain much metadata, the actual
file size is not among the metadata but has to be calculated, and there are no timestamps among the
metadata.

Flash memory works differently than old-fashioned hard disks or RAM. Writing to flash memory can
only be done by writing a whole page [5]. The page size is specific to a particular chip and is often 512,
1024, or 2048 bytes. A bit can only be set or flipped from ’1’ to ’0’, and to flip the bit back to ’1’, a whole
erase block has to be erased. Erase-blocks consist of several pages. This means that modifying data
in flash memory involves writing new versions of the data rather than overwriting existing data. A file
system operating on a flash memory need to either take this into account or introduce a flash translation
layer that mimics an addressable read-write memory area for the operating system, while it hides the
data shuffling happening in the background. The coffee file system is designed for operating on a flash
device and does not use a flash translation layer.

When a file is allocated, the default is to allocate 11 pages for the file, and when a page in the file is
modified, a log file is created, recording a number of changes in the file until there are no more pages left
in the log file. The next modification will then trigger a new file with the same name to be created. The
default number of updates in the log file is four pages, and the default page size is 0x100 bytes, which
equals 256 bytes.

Appending data to the end of an existing file does not create an entry in the log file. As an append
operation doesn’t modify existing data, the data can be written directly to the already allocated pages.
When an append operation has reached the initial file allocation size, a new copy of the file will be made,
and twice the number of pages will be allocated.

The erasure of data happens when the write-pointer in the file system reaches the end of the address-
able flash memory. This triggers a garbage collection, where all free erase blocks, or sectors as it is named
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Figure 8: A simplified model of an application running on a Contiki device and 3 different acquisition
methods.

in Coffee, are erased and are free to be reused. The file system does not move existing data to free up
more pages.

The simplicity of both the file system and Contiki as an operating system removes many of the storage
abstraction layers and simplifies the model considerably. From the top, the device has an application
running, where it receives inputs, and reacts to this. The application function acts on the events; as an
example, it can store a value that is read from a device interface in a file. As the file containing these
records is sent to a central server by an application, the log file is deleted by the application. This all
happens at the top layer in the stack. Beneath this layer, the data is held in data structures in RAM and
temporarily stored in the physical RAM. The file write will open a new stack toward the flash memory
and write the files there.

The storage management functions are different between RAM and Flash, and the function will trigger
both copies of the data to be spread over the physical Flash memory, and keep track of the unused memory
such that new writes can be done at the right location. In the physical flash, the data can be held for a
long time, until the flash memory chip breaks, or the flash cell stops working. This is the domain of the
memory device’s failure function.

Figure 8 demonstrates a simplified block model of an app running on a Contiki device. To calculate
the volatility of the system, we can use the equations from Section 4.3 to calculate the volatility for the
acquisition methods:

Vphysical(t) = V1(t)× V2(t)× V4(t)× (1− (1− V5,1(t))(1− V5,2(t))) (12)
VRAM(t) = V1(t)× V2(t)× V3(t) (13)
Vlogical(t) = V1(t)× V2(t)× V4(t)× V5(t)× V6(t) (14)

Each of the individual volatility functions in Figure 8 has to be assessed, to find Vi(t) used in the
above calculation. In our example, the data was duplicated when stored in flash memory, therefore the
parallel combination in V5. For the logical acquisition, Vlogical(t), the duplicated data in the flash memory
is not visible, and not used by the file system when reading, so the whole pathway is in series.

Another storage stack includes the transfer of the file to a central server. Here the storage management
functions translate the data to network packets that are sent and stored in RAM of the gateway and
other network equipment until it reaches the central server. This is outside the bounds of the Coffee file
system, though.

To acquire data, the investigator can perform a logical acquisition, some devices allow the connection
through USB, and might use a Media Transfer Protocol for transferring a subset of the files in the
operating system. This is shown in Figure 3. The storage stack is different between the application layer
that process events and the application layer for the MTP server that transfer the data to the forensic
collection computer. If the investigator instead uses a chip-off method, the data will be collected from
the physical flash storage layer, at level 1.
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6 Summary and conclusions
In this chapter, a model of data and information volatility is introduced. This volatility model is used
to analyze the elements in IoT systems that affect the volatility of data and of information in the IoT
system. The emphasis in this chapter is on the data volatility. The data volatility model consists of (i)
an abstraction for a storage layer stack; (ii) events and system states affecting data; (iii) and functions
for how data is transformed between the application and the physical storage. From this data volatility
model, all individual components contribute to the overall volatility. Based on the volatility model, we
also introduce a quantitative measure for volatility. It allows for a more objective assessment of volatility.
The volatility measure is dependent on the forensic method used, as each forensic method collects data
from different components in the storage layer stack. We show that the IoT system can have several
volatility measures, one for each element in the storage stack used to collect forensic data.

We derive a statistical measurement method from dependability and reliability analysis. This statis-
tical measuring method is used to calculate the volatility contribution in each storage layer component.
Quantifying the volatility can thus be established by combining the probability distributions by the data
pathway connections in the storage stack. The data pathways can be a mix of series and parallel con-
nections. For the volatility function, two commonly used probability distributions are described, and the
Mean Time To Inaccessibility is introduced. We have modeled this after the Mean Time To Failure used
in reliability analysis.

The model is exemplified using Contiki-NG, an open-source, minimalist, and real-time operating
system for resource-constrained IoT devices. By using Contiki-NG as an example, we can focus on the
core model without the added complexities of more advanced operating systems and storage management
functions. In addition, Contiki contains a powerful simulator that we can use for our study and for
volatility analysis.

Our study described in this chapter is a step towards establishing a scientific base for measuring the
data and information volatility in an IoT system. As IoT systems, in particular, and other computer
networks in general, become more and more complex, an objective and reliable assessment of the systems’
volatility is becoming more crucial. It works toward a forensically sound acquisition of data with a high
evidential value.

With our study, we aim to establish a theoretical foundation toward a scientific base for volatility
analysis. Further empirical studies are needed to reveal each element’s specific volatility contributions
in the volatility model, and to translate this theoretical model into working procedures for forensic
practitioners. The similarities and differences between IoT systems and individual devices regarding the
components and their volatilities are open for further studies. Information volatility is introduced in this
chapter but deserves to be focused in more detail elsewhere.

Our objective is that this research will leverage better tools for the forensic investigator and the
forensic community at large, to objectively and reliably be able to quickly prioritize the data collection
during the triage process such that the quality of the investigation can be upheld. In the courtroom,
enough evidence with high quality is a necessity for a fair trial. By enabling the investigator to collect and
analyze more relevant data, the court has a better understanding of the facts to make a just judgment,
decreasing the chance of a miscarriage of justice.
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