• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Room semantics inference using random forest and relational graph convolutional networks: A case study of research building

Hu, Xuke; Fan, Hongchao; Noskov, Alexey; Wang, Zhiyong; Zipf, Alexander; Gu, Fuqiang; Shang, Jianga
Peer reviewed, Journal article
Published version
Åpne
Hu (Låst)
Permanent lenke
https://hdl.handle.net/11250/2825228
Utgivelsesdato
2020
Metadata
Vis full innførsel
Samlinger
  • Institutt for bygg- og miljøteknikk [5092]
  • Publikasjoner fra CRIStin - NTNU [41732]
Originalversjon
10.1111/tgis.12664
Sammendrag
Semantically rich maps are the foundation of indoor location-based services. Many map providers such as OpenStreetMap and automatic mapping solutions focus on the representation and detection of geometric information (e.g., shape of room) and a few semantics (e.g., stairs and furniture) but neglect room usage. To mitigate the issue, this work proposes a general room tagging method for public buildings, which can benefit both existing map providers and automatic mapping solutions by inferring the missing room usage based on indoor geometric maps. Two kinds of statistical learning-based room tagging methods are adopted: traditional machine learning (e.g., random forests) and deep learning, specifically relational graph convolutional networks (R-GCNs), based on the geometric properties (e.g., area), topological relationships (e.g., adjacency and inclusion), and spatial distribution characteristics of rooms. In the machine learning-based approach, a bidirectional beam search strategy is proposed to deal with the issue that the tag of a room depends on the tag of its neighbors in an undirected room sequence. In the R-GCN-based approach, useful properties of neighboring nodes (rooms) in the graph are automatically gathered to classify the nodes. Research buildings are taken as examples to evaluate the proposed approaches based on 130 floor plans with 3,330 rooms by using fivefold cross-validation. The experiments conducted show that the random forest-based approach achieves a higher tagging accuracy (0.85) than R-GCN (0.79).
Utgiver
Wiley
Tidsskrift
Transactions on GIS
Opphavsrett
The published version of the article will not be available due to copyright restrictions by Wiley

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit