Vis enkel innførsel

dc.contributor.advisorPedersen, Morten Dinhoff
dc.contributor.authorMatras, Finn
dc.date.accessioned2021-09-23T18:03:52Z
dc.date.available2021-09-23T18:03:52Z
dc.date.issued2020
dc.identifierno.ntnu:inspera:56990118:20731018
dc.identifier.urihttps://hdl.handle.net/11250/2780899
dc.description.abstractPopulariteten av droner har økt voldsomt de siste årene. I motsetning til helikoptre, har droner mange tettsittende rotorer. Disse rotorene påvirker hverandre aerodynamisk, noe som fører til endringer i det induserte tapet. Tidligere har det ikke vært mulig å analysere denne interaksjonen direkte, men en analytisk modell har nylig blitt formulert. Dette muliggjør en effektiv beskrivelse av kontrollfordelingens innflytelsen på det induserte tapet. Denne avhandlingen undersøker hvilke grep som kan tas for å minimere tap under flygning. Til grunne for en slik analyse ligger formulerte modeller som beskriver dynamikken til dronens legeme, luftstrømningene og aerodynamikken til de roterende propellene. Samlet streber de å etterlikne oppførselen til en ekte drone. For å beskrive oppførselen til dette systemet har både statisk og dynamisk analyse blitt tatt i bruk. Statisk analyse har også blitt utført på modeller med forskjellig antall rotorer for å vise det større bilde. Beregninger har vist at det er mulig å oppnå inntil flere prosent reduksjon i totale tap for systemer med mange rotorer. I tillegg til kontrollfordeling har også optimale translasjonsstrategier blitt analysert. Ved å bevege seg med den optimale hastigheten for et gitt rotorsystem, kan energitapet reduseres med inntil 30%.
dc.description.abstractThe use of multicopters has increased dramatically in recent years. In contrast to helicopters, they have several closely located rotors, which interact with one another aerodynamically. This interaction is directly linked to the induced power losses, which it can increase or decrease. Thanks to an analytical formulation of the interaction between the rotors, it is possible to analyze how control allocation affects the power losses. This thesis examines and implements power-loss minimizing strategies on multicopters. Accurate and scalable models are produced describing rigid body dynamics, inflow dynamics, and airloads. Combined, they aim to represent the behavior of multicopters accurately. To analyze the system, both steady-state and dynamical analyses have been conducted. In order to showcase the results on a larger spectrum, steady-state analysis has also been performed on systems with varying rotor counts. Computations have shown that it is possible to achieve a reduction in total losses of several percents for systems with many rotors. In addition to control allocation, optimal translational strategies have also been analyzed. By translating optimally, a given rotor system can reduce the power losses by up to 30%.
dc.language
dc.publisherNTNU
dc.titleMultiaspect power optimization based on induced flow considerations
dc.typeMaster thesis


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel