Vis enkel innførsel

dc.contributor.authorVlk, Marek
dc.contributor.authorDatta, Anurup
dc.contributor.authorAlberti, Sebastian
dc.contributor.authorMurugan, Ganapathy Senthil
dc.contributor.authorAksnes, Astrid
dc.contributor.authorJagerska, Jana
dc.date.accessioned2021-09-15T08:30:56Z
dc.date.available2021-09-15T08:30:56Z
dc.date.created2021-08-24T10:38:20Z
dc.date.issued2021
dc.identifier.citationOptical Materials Express. 2021, 11 (9), 3111-3124.en_US
dc.identifier.issn2159-3930
dc.identifier.urihttps://hdl.handle.net/11250/2777340
dc.description.abstractTypical applications of integrated photonics in the mid-infrared (MIR) are different from near-infrared (telecom) range and, in many instances, they involve chemical sensing through MIR spectroscopy. Such applications necessitate tailored designs of optical waveguides. Both cross-sectional designs and processing methods of MIR waveguides have been a subject of extensive research, where material transparency and substrate leakage of guided modes have been the most common challenges. Both these challenges can be solved simultaneously with air-suspended waveguides. In this paper, tantalum pentoxide (Ta2O5, tantala) thin films deposited on silicon were tested for two different dry under-etching procedures, XeF2 and SF6 plasma, with both of them facilitating selective removal of silicon. We analyze the advantages and limitations of these two methods and optimize the processing for fabricating membranes with arbitrary length and cross-sectional aspect ratio over 300. The performance of these high-aspect-ratio membranes as a framework for single-mode waveguides is rigorously analyzed at 2566 nm wavelength. With tantala being transparent up to 10 µm wavelength, such waveguides are particularly well suited for gas sensing in MIR.en_US
dc.language.isoengen_US
dc.publisherOSA Publishingen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleFree-standing tantalum pentoxide waveguides for gas sensing in the mid-infrareden_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber3111-3124en_US
dc.source.volume11en_US
dc.source.journalOptical Materials Expressen_US
dc.source.issue9en_US
dc.identifier.doi10.1364/OME.430994
dc.identifier.cristin1928230
dc.relation.projectTromsø forskningsstiftelse: 17_SG_JJen_US
dc.relation.projectERC-European Research Council: 758973en_US
dc.relation.projectEngineering and Physical Sciences Research Council (EPSRC): EP/N00762X/1en_US
dc.relation.projectNorges forskningsråd: 262608en_US
dc.relation.projectNorges forskningsråd: 295864en_US
dc.relation.projectNorges forskningsråd: 221860en_US
dc.description.localcodePublished by The Optical Society under the terms of the Creative Commons Attribution 4.0 License. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.en_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal