• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Laser welding of niobium to AISI 304 steel using a copper interlayer

Zhao, Jian; Shi, Mingxiao; Li, Yanjun; Ma, Xiang; Fang, Zhenxing; Yan, Hua
Peer reviewed, Journal article
Accepted version
Thumbnail
Åpne
Zhao (1.054Mb)
Permanent lenke
https://hdl.handle.net/11250/2733485
Utgivelsesdato
2020
Metadata
Vis full innførsel
Samlinger
  • Institutt for materialteknologi [2750]
  • Publikasjoner fra CRIStin - NTNU [41894]
Sammendrag
Cu interlayers with thicknesses of 1, 1.5, and 2 mm were used to join niobium and AISI 304 steel. Fractures occurred in the weld, the Nb base metal, and the unmelted Cu interlayer when the Cu interlayer thickness was 1, 1.5, and 2 mm, respectively. When the thickness of the Cu interlayer was 1 mm, the weld microstructure consisted of austenite with Cu-rich particles along the austenitic grain boundaries and within the austenitic grains, a composite-like structure (the Fe2Nb lamellae and particles in a γ matrix) embedded with coarse Cu globules, and a mixture of bulk Fe7Nb6, Nb-rich dendrites, and Cu matrix. The bulk brittle Fe7Nb6 phase embrittled the joint. However, when the thickness of the Cu interlayer was 1.5 mm, the weld microstructure consisted of austenite with Cu-rich precipitates along the austenitic grain boundaries and a Cu-rich phase embedded with Nb-rich particles and dendrites. Solid-solution strengthening of Cu by Fe was responsible for the improved mechanical properties of the joint. The mixture of Nb-rich particles and dendrites in the Cu matrix was also helpful in enhancing the joint strength. Furthermore, when the thickness of the Cu interlayer was 2 mm, the weld microstructure consisted of austenite with Cu-rich precipitates along the austenitic grain boundaries and within the austenitic grains, an unmelted Cu interlayer, and Nb-rich particles and dendrites embedded in a Cu matrix. The unmelted Cu interlayer reduced the joint strength.
Utgiver
Taylor and Francis
Tidsskrift
Journal of Adhesion Science and Technology

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit