• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

ReRe: A Lightweight Real-time Ready-to-Go Anomaly Detection Approach for Time Series

Lee, Ming-Chang; Lin, Jia-Chun; Gran, Ernst Gunnar
Chapter
Accepted version
Thumbnail
View/Open
Lee (1.906Mb)
URI
https://hdl.handle.net/11250/2731867
Date
2020
Metadata
Show full item record
Collections
  • Institutt for informasjonssikkerhet og kommunikasjonsteknologi [1644]
  • Publikasjoner fra CRIStin - NTNU [21936]
Original version
https://doi.org/10.1109/COMPSAC48688.2020.0-226
Abstract
Anomaly detection is an active research topic in many different fields such as intrusion detection, network monitoring, system health monitoring, IoT healthcare, etc. However, many existing anomaly detection approaches require either human intervention or domain knowledge, and may suffer from high computation complexity, consequently hindering their applicability in real-world scenarios. Therefore, a lightweight and ready-to-go approach that is able to detect anomalies in real-time is highly sought-after. Such an approach could be easily and immediately applied to perform time series anomaly detection on any commodity machine. The approach could provide timely anomaly alerts and by that enable appropriate countermeasures to be undertaken as early as possible. With these goals in mind, this paper introduces ReRe, which is a Real-time Ready-to-go proactive Anomaly Detection algorithm for streaming time series. ReRe employs two lightweight Long Short-Term Memory (LSTM) models to predict and jointly determine whether or not an upcoming data point is anomalous based on short-term historical data points and two long-term self-adaptive thresholds. Our experiment based on real-world time-series datasets demonstrates the good performance of ReRe in real-time anomaly detection without requiring human intervention or domain knowledge.
Publisher
Institute of Electrical and Electronics Engineers (IEEE)

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit