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Abstract—Anomaly detection is an active research topic in 
many different fields such as intrusion detection, network 
monitoring, system health monitoring, IoT healthcare, etc. 
However, many existing anomaly detection approaches require 
either human intervention or domain knowledge, and may suffer 
from high computation complexity, consequently hindering their 
applicability in real-world scenarios. Therefore, a lightweight and 
ready-to-go approach that is able to detect anomalies in real-time 
is highly sought-after. Such an approach could be easily and 
immediately applied to perform time series anomaly detection on 
any commodity machine. The approach could provide timely 
anomaly alerts and by that enable appropriate countermeasures 
to be undertaken as early as possible.  With these goals in mind, 
this paper introduces ReRe, which is a Real-time Ready-to-go 
proactive Anomaly Detection algorithm for streaming time series. 
ReRe employs two lightweight Long Short-Term Memory 
(LSTM) models to predict and jointly determine whether or not 
an upcoming data point is anomalous based on short-term 
historical data points and two long-term self-adaptive thresholds. 
Experiments based on real-world time-series datasets demonstrate 
the good performance of ReRe in real-time anomaly detection 
without requiring human intervention or domain knowledge.  

Keywords—Time-series anomaly detection, lightweight LSTM, 
unsupervised learning, real time, self-adaptive threshold 

I. INTRODUCTION 
A time series is a series of data points generated by for 

instance system monitoring tools, smart meters, stock exchange, 
or IoT devices, etc., where the data points are evenly indexed in 
time order. Anomaly detection refers to the identification of 
abnormal or novel events embedded in a time series [1]. An 
abnormal event is usually called an anomaly, which could be a 
point anomaly or a temporal anomaly. A point anomaly, also 
called an outlier, happens when a single data point is outside the 
expected range, whereas a temporal anomaly occurs when the 
pattern of the time series changes and lasts for a while [2].  

In the last decade, a number of approaches and methods have 
been introduced for time series anomaly detection in different 
areas such as intrusion detection, IP networks, software bug 
detection, system health detection, smart homes, healthcare, etc. 
Examples include [2][5][9-14]. However, most approaches 
require either domain knowledge or human intervention. For 

instances, they might require humans to collect sufficient and 
representative training data, manually label training data, 
conduct an off-line training process, understand the distribution 
of the target time series, perform parameter tuning, and/or 
determine appropriate thresholds empirically. These 
requirements consequently limit the applicability and usefulness 
of these approaches in practice. 

It would be highly valuable to facilitate a ready-to-go and 
self-adaptive anomaly detection approach for time series where 
human intervention and domain knowledge are not needed. 
Such an approach could be easily and immediately utilized and 
could adapt to pattern and distribution changes in any time 
series. Furthermore, it might also be highly valuable to provide 
a real-time and proactive anomaly detection approach for time 
series since such an approach helps to trigger prompt 
troubleshooting and enables appropriate countermeasures to be 
undertaken as soon as possible. Last but not least, it would be 
highly beneficial to offer a lightweight anomaly detection 
approach with all above-mentioned features because such an 
approach can be deployed on any commodity machine, such as 
desktops, laptops, and mobile phones.  

In this paper, we introduce ReRe, which stands for Real-time 
Ready-to-go Proactive Time Series Anomaly Detection based 
on Long Short-Term Memory (LSTM) [7]. The goal of ReRe is 
to provide accurate, real-time, and lightweight anomaly 
detection for time series without requiring domain knowledge or 
human intervention. In other words, ReRe must work 
completely by itself to learn the data distribution of the target 
time series in an online manner, dynamically determine its 
detection threshold to adapt to pattern changes in the target time 
series, and detect any anomalous data points either proactively 
or on time. To achieve these goals, ReRe employs two LSTM 
models and two long-term self-adaptive detection thresholds to 
predict and jointly decide if the upcoming data point in the target 
time series is anomalous or not. The two LSTM models run in 
parallel with a simple network structure and are always trained 
with short-term historical data points. These features enable 
lightweight and real-time LSTM training and anomaly 
detection. By dynamically and individually adjusting each 
threshold over time, the two LSTM models are able to tolerate 
minor pattern changes and detect anomalies in the target time 



 

 

series. Note that the two thresholds are determined differently. 
One is determined by taking all data points collected so far into 
consideration. The other one is determined by taking all data 
points that are considered normal into consideration. The 
purpose is to provide two levels of sensitivity for accurate 
anomaly detection. 

To demonstrate the detection performance of ReRe, we 
conducted experiments based on real-world time series datasets 
provided by the Numenta Anomaly Benchmark (NAB) [3] and 
the Yahoo benchmark datasets [15]. We compared ReRe with 
three state-of-the-art anomaly detection approaches. The results 
show that ReRe outperforms the other approaches in precision, 
recall, and F-score. In addition, the results also demonstrate that 
ReRe is lightweight, computationally efficient, and able to 
conduct anomaly detection in real-time. The contributions of 
this paper are as follows: 

1. The proposed ReRe is a generic, ready-to-go, and 
completely unsupervised learning approach. It can be easily 
and immediately applied to detect anomalies in any 
streaming time series without knowing the distribution of 
the target time series or requiring human effort to pre-train 
a learning model, pre-build a data model, tune parameters, 
or set a detection threshold manually.  

2. ReRe is both lightweight and cost-effective due to the 
employed simple LSTM network structure and the short-
term Look-Back and Predict-Forward strategy [16]. These 
features enable ReRe to provide anomaly detection in real-
time.   

3. ReRe is able to tolerate and adapt to pattern changes in the 
target time series due to its LSTM retraining characteristic 
and the two long-term self-adaptive detection thresholds.  

The rest of the paper is organized as follows: Section II 
describes related work. In Section III, we introduce the details 
of ReRe. Section IV presents and discusses the experiments and 
the corresponding results. In Section V, we conclude this paper 
and outline future work. 

II. RELATED WORK 
Over the years, a number of anomaly detection approaches 

have been introduced. Statistical learning approaches are one of 
the categories. These approaches work by fitting a statistical 
model to a given set of normal data and then use the model to 
determine whether an upcoming data point fits this model or not. 
If the data point has a low probability to be generated from the 
model, it is considered anomalous. For instance, Twitter has 
proposed two anomaly detection algorithms, called 
AnomalyDetectionTs (ADT for short), and 
AnomalyDetectionVec (ADV for short). Both of them have 
been implemented and included in an open-source R package 
[4]. ADT is designed to detect one or more statistically 
significant anomalies in a given time series, while ADV is 
designed to detect one or more statistically significant anomalies 
in a given vector of observations without timestamp information. 
Since ADT and ADV are statistical based, they need sufficient 
amount of data points in the target time series and consequently 
might not be an appropriate solution to detect anomalies in 
streaming time series. In addition, these two approaches are 
parameter sensitive. They require human experts to set 

appropriate values to their parameters in order to achieve good 
detection performance.  

Luminol [12] is another anomaly detection approach 
proposed by LinkedIn for time series. Luminol is implemented 
as an open-source Python library for identifying anomalies in 
real user monitoring (RUM) data for LinkedIn pages and 
applications. Given a time series, Luminol calculates an 
anomaly score for each data point in the time series. If a data 
points has a high score, it means that this data point is likely to 
be anomalous as compared with other data points in the time 
series. In other words, human experts still need to further 
determine which data points are anomalies based on their 
experiences. In addition, Luminol suffers from similar issues as 
ADT and ADV since it is also statistical based. 

Machine learning approaches represent another category of 
anomaly detection. Most approaches belonging to this category 
require either domain knowledge or human intervention. For 
example, Yahoo introduced EGADS [9] to detect anomalies on 
time series based on a collection of anomaly detection and 
forecasting models. However, EGADS requires to model the 
target time series so as to predict a data value later used by its 
anomaly detection module and its altering module. Lavin and 
Ahmad [2] proposed Hierarchical Temporal Memory (HTM) to 
capture changing patterns in time series. However, HTM 
requires 15% of a training dataset to be non-anomalous so that 
it can used this data to train its neural network. Different from 
EGADS and HTM, the approach proposed in this paper (i.e., 
ReRe) does not have these requirements.  

Siffer et al. [10] proposed a time series anomaly detection 
approach based on Extreme Value Theory. This approach makes 
no assumption on the distribution of time series and requires no 
threshold manually set by humans. However, this approach 
needs a long time period to do necessary calibration before 
conducting anomaly detection. According to [10], the 
calibration process needs at least 1000 data points, which is 
much longer than the probation period required by ReRe. 
Greenhouse [6] is a zero-positive anomaly detection algorithm 
for time series based on LSTM. Greenhouse requires all data 
points in its training datasets to be non-anomalous, making 
Greenhouse a kind of supervised learning approach. During the 
training phase, Greenhouse adopts a Look-Back and Predict-
Forward strategy to detect anomalies. For a given time point t, a 
window of most recently observed values of length B is used as 
“Look-Back” to predict a subsequent window of values of length 
F as “Predict-Forward”. This feature enables Greenhouse to 
adapt to pattern changes in the training data. However, if the 
training data is not representative, Greenhouse might not be able 
to capture and accommodate pattern changes in real-world time 
series.  

RePAD [16] is a real-time time series anomaly detection 
approach also based on the Look-Back and Predict-Forward 
strategy. RePAD utilizes a single LSTM model trained with 
short-term historic data points to be the predictor and detector. 
Together with the LSTM model, a dynamically adjusted long-
term detection threshold is utilized to determine if each data 
point in the target time series is anomalous or not. According to 
the experiment results shown in [16], RePAD is able to detect 
anomalies either proactively or on time, but RePAD suffers from 



 

 

some undesirable false positives. Different from RePAD, ReRe 
employs two LSTM models and two long-term self-adaptive 
thresholds to detect anomalies in a parallel manner. The two 
thresholds provide two levels of detection sensitivity aiming to 
keep a high true positive rate and a low false positive rate. The 
details of ReRe will be introduced in the next section, and the 
comparison between ReRe, ADT, ADV, and RePAD will be 
shown in Section IV.  

III. THE DETAILS OF RERE 
As stated earlier, ReRe utilizes the Look-Back and Predict-

forward strategy based on short-term historic data points. More 
specifically, ReRe utilizes two LSTMs to individually predict 
each data point in the target time series based on the data values 
observed at the past 𝑏  continuous time points, and then 
determine if the next data point is anomalous or not. Note that 𝑏 
is called the Look-Back parameter, and that b is a small integer, 
implying that training data used to train the two LSTMs is small 
in size (i.e., 𝑏 data points). Therefore, a simple network structure 
should be sufficient for the two LSTMs. Due to this, each LSTM 
consists of only one hidden layer with 10 hidden units. Each 
LSTM is always trained with the learning rate of 0.15, which 
enables a fast learning speed and provides a satisfactory learning 
result. With respect to epoch (which is defined as one forward 
pass and one backward pass of all the training data), it is clear 
that too many epochs might overfit the training data, whereas 
too few epochs may underfit the training data. To address this 
issue, ReRe employs Early Stopping [8] to automatically 
determine the number of epochs for each LSTM. In this paper, 
Early Stopping always chooses a number between 1 and 50.  

ReRe consists of one main function and two sub-procedures. 
One is called Detector 1, and the other is called Detector 2. Let 
𝑡 be the current time point. Note that 𝑡 starts at 0, which is the 
moment when ReRe is launched. As illustrated in Fig. 1, when 
ReRe is launched, this approach will go through a short 
probation period with a length of 2𝑏 − 1 time points (see lines 
3 to 11, Fig. 1). During this period, ReRe keeps training an 
LSTM model based on the past 𝑏 observed data points, uses the 
corresponding LSTM model to predict the value of the data 
point at the next time point, and then derives the corresponding 

AARE values. Note that AARE stands for Average Absolute 
Relative Error. A low AARE value indicates that the predicted 
values are close to the observed values. During the probation 
period, everything created or generated will be duplicated and 
used later by Detector 1 and Detector 2.  

Whenever time advances and 𝑡 ≥ 2𝑏 − 1 , ReRe invokes 
Detector 1 and Detector 2 to separately perform anomaly 
detection by passing 𝑡 and 𝑣! to both of them. If both Detector 1 
and Detector 2 return that 𝑣! is abnormal (See line 14 of Fig. 1), 
ReRe concludes that 𝑣! is an anomaly and immediately reports 
it to trigger troubleshooting or countermeasures.  

Fig. 2 shows the algorithm of Detector 1 where 𝑀"  is a 
duplicate of the LSTM model created in the probation period. 
Whenever receiving 𝑡 and 𝑣! from ReRe, Detector 1 calculates 
𝐴𝐴𝑅𝐸!# based on Equation 1: 

𝐴𝐴𝑅𝐸!# =
1

𝑡 − 𝑏 + 1 ∙ /
0𝑣$ − 𝑣𝑦#1 0

𝑣$

!

$%&

	 (1) 

where 𝑣$ is the observed data value at time point 𝑦, and 𝑣$#4 is the 
forecast data value predicted by 𝑀"  at 𝑦 , where 𝑦 = 𝑏, 𝑏 +
1,… , 𝑡. After that, as shown by lines 3 to 9 of Fig. 2, Detector 1 

calculates a detection threshold, denoted by 𝑡ℎ𝑑" , by 
considering all previously calculated AARE values (i.e., 
𝐴𝐴𝑅𝐸&# , 𝐴𝐴𝑅𝐸&'"# , …, 𝐴𝐴𝑅𝐸!#) based on the Three-Sigma Rule 
[5], which is a commonly used rule for anomaly detection.  

If 𝐴𝐴𝑅𝐸!# is smaller than or equal to 𝑡ℎ𝑑" (see line 10 of Fig. 
2), it means that 𝑣! is similar to previous data points. In this case, 
Detector 1 replies to ReRe that 𝑣! is normal and keeps using the 
current LSTM model (i.e., 𝑀") to predict the next data point 
𝑣!'"#9. However, if 𝐴𝐴𝑅𝐸!#  is greater than 𝑡ℎ𝑑" , implying that 
either the data pattern of the target time series has changed or an 
anomaly might happen, Detector 1 retrains its LSTM model by 
taking the most recent 𝑏 data points, i.e., [𝑣!(& , 𝑣!(&'"… , 𝑣!("], 
as the training data. After that, Detector 1 uses this new LSTM 
model to re-predict 𝑣!#1  and then re-calculates the corresponding 
𝐴𝐴𝑅𝐸!#  (see lines 13 to 15 of Fig. 2). 

ReRe algorithm 
Input: Data points in the target time series  
Output: Anomaly notifications 
1: While time has advanced { 
2:    Let 𝑡 be the current time point and 𝑣" be the data point collected at 𝑡; 
3:    if 𝑡 = 𝑏 − 1{ // i.e.,	𝑡 = 2 if 𝑏 = 3 
4:      Train an LSTM model called 𝑀# with training data [𝑣$, 𝑣#, … , 𝑣"]; 
5:      Use 𝑀# to predict 𝑣"%#&-;  
6:      Let 𝑀' and 𝑣"%#&&- be the duplicates of 𝑀# and 𝑣"%#&- respectively;} 
7:    else if 𝑡 > 𝑏 − 1 and 𝑡 < 2𝑏 − 1 { //i.e.,	2 < 𝑡 < 5 if 𝑏 = 3 
8:      Calculate 𝐴𝐴𝑅𝐸"& based on Equation 1;  
9:      Retrain 𝑀# with training data [𝑣"()%#, 𝑣"()%'… , 𝑣"];  
10:      Use 𝑀# to predict 𝑣"%#&-; 
11:      Let 𝐴𝐴𝑅𝐸"&&, 𝑀', and 𝑣"%#&&- be the duplicates of 𝐴𝐴𝑅𝐸"&, 𝑀#, and 𝑣"%#&- respectively;} 
12:    else if 𝑡 ≥ 2𝑏 − 1{  //The probation period has passed. 
13:      Invoke Detector 1 and Detector 2 by passing 𝑡 and 𝑣" to both of them;  
14:      if both Detector 1 and Detector 2 consider 𝑣" abnormal{ 
15:          ReRe reports 𝑣" as an anomaly immediately;}}}  

Fig. 1. The algorithm of ReRe. 



 

 

 
Detector 1 
Input: 𝑡 and 𝑣"  
Output: A returned message to ReRe 
1: Obtain	𝑡 and 𝑣" from ReRe;  
2: Calculate 𝐴𝐴𝑅𝐸"& based on Equation 1; 
3: Let 𝑠𝑢𝑚 = 0, 𝑥 = 0, and 𝑐 = 0; 
4: while 𝑥 ≤ 𝑡 − 𝑏{	𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝐴𝐴𝑅𝐸)%*& ;	𝑥 = 𝑥 + 1;} 
5: 𝜇# = 𝑠𝑢𝑚/(𝑡 − 𝑏 + 1); 
6: Reset 𝑠𝑢𝑚 and 𝑥 to be zero; 
7: while 𝑥 ≤ 𝑡 − 𝑏{ 𝑠𝑢𝑚 = 𝑠𝑢𝑚 + (𝐴𝐴𝑅𝐸)%*& − 𝜇#)'; 𝑥 = 𝑥 + 1;} 
8: 𝜎# = B𝑠𝑢𝑚/(𝑡 − 𝑏 + 1); 
9: 𝑡ℎ𝑑# = 𝜇# + 3𝜎#;  
10: if 𝐴𝐴𝑅𝐸"& ≤ 𝑡ℎ𝑑#{  
11:    Return message “𝑣" is normal” to ReRe; Use 𝑀# to predict 𝑣"%#&- ;} 
12: else{  
13:    Retrain a new LSTM by taking [𝑣"(), 𝑣"()%#… , 𝑣"(#] as the training data; 
14:    Use the new trained LSTM to re-predict 𝑣"&E ; 
15:    Re-calculate 𝐴𝐴𝑅𝐸"& using Equation 1;} 
16:    if 𝐴𝐴𝑅𝐸"& ≤ 𝑡ℎ𝑑#{ 
17:       Return message “𝑣" is normal” to ReRe; Replace 𝑀# with the new trained LSTM;} 
18:    else{  
19:       Return message “𝑣" is abnormal” to ReRe;}} 

Fig. 2. The algorithm of Detector 1.

Detector 2 
Input: 𝑡 and 𝑣"  
Output: A returned message to ReRe 
1: Obtain	𝑡 and 𝑣" from ReRe; 
2: Calculate 𝐴𝐴𝑅𝐸"&& based on Equation 2; 
3: Let 𝑠𝑢𝑚 = 0, 𝑥 = 0, and 𝑐 = 0; 
4: while 𝑥 ≤ 𝑡 − 𝑏{ 
5:   if 𝑣)%* was considered normal by Detector2{ 𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝐴𝐴𝑅𝐸)%*&& ; 𝑐 = 𝑐 + 1;} 
6:     𝑥 = 𝑥 + 1;} 
7: 𝜇' = 𝑠𝑢𝑚/𝑐; 
8: Reset 𝑠𝑢𝑚 and 𝑥 to be zero; 
9: while 𝑥 ≤ 𝑡 − 𝑏{ 
10:     if 𝑣)%* was considered normal by Detector2{ 𝑠𝑢𝑚 = 𝑠𝑢𝑚 + (𝐴𝐴𝑅𝐸)%*&& − 𝜇')'; 𝑐 = 𝑐 + 1;} 
11:     𝑥 = 𝑥 + 1;} 
12:  𝜎' = B𝑠𝑢𝑚/𝑐; 
13:  𝑡ℎ𝑑' = 𝜇' + 3𝜎';  
14:   if 𝐴𝐴𝑅𝐸"&& ≤ 𝑡ℎ𝑑'{  
15:   Return message “𝑣" is normal” to ReRe; Use 𝑀' to predict 𝑣"%#&&-;} 
16:   else{  
17:     Retrain an LSTM by taking [𝑣"(), 𝑣"()%#… , 𝑣"(#] as the training data; 
18:     Use the new trained LSTM model to predict 𝑣"&&F ; 
19:     Re-calculate 𝐴𝐴𝑅𝐸"&& using Equation 2; 
20:     if 𝐴𝐴𝑅𝐸"&& ≤ 𝑡ℎ𝑑'{ 
21:       Return message “𝑣" is normal” to ReRe; Replace 𝑀' with the new trained LSTM model;} 
22:  else{  
23:       Return message “𝑣" is abnormal” to ReRe;}}  

Fig. 3. The algorithm of Detector 2.

If the new 𝐴𝐴𝑅𝐸!# is smaller than or equal to 𝑡ℎ𝑑" (see line 
16), Detector 1 considers that the data pattern in the time series 
has slightly changed and that 𝑣! is normal. In this case, Detector 
1 replaces 𝑀" with this new trained LSTM model to adapt to the 
pattern change. On the contrary, if the new 𝐴𝐴𝑅𝐸!# is still larger 
than 𝑡ℎ𝑑" (see line 18 of Fig. 2), Detector 1 considers that 𝑣! is 
abnormal since the LSTM trained with the most recent data 

points is still unable to accurately predict 𝑣!. At this time point, 
a warming message is immediately sent to ReRe for further 
evaluation.  

Fig. 3 illustrates the algorithm of Detector 2, which is similar 
to that of Detector 1, except when it comes to how 𝐴𝐴𝑅𝐸!## and 
detection threshold 𝑡ℎ𝑑)  are calculated. Note that Detector 2 
calculates 𝐴𝐴𝑅𝐸!## based on Equation 2: 



 

 

𝐴𝐴𝑅𝐸!## =
1

𝑡 − 𝑏 + 1 ∙ /
0𝑣$ − 𝑣𝑦##40

𝑣$

!
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where 𝑣$##4  is the data value predicted by Detector 2 for time point 
𝑦. As shown from lines 3 to 13 of Fig. 3, if a data point 𝑣&'* 
(where 𝑥 = 0,1,… , 𝑡 − 𝑏) was considered normal by Detector 
2, the corresponding AARE value (i.e., 𝐴𝐴𝑅𝐸&'*## ) will be 
included to calculate 𝑡ℎ𝑑) . In other words, all ARRE values 
associated with the data points that are considered abnormal by 
Detector 2 will be excluded from the calculation of 𝑡ℎ𝑑). This 
is the key reason why 𝑡ℎ𝑑) is different from 𝑡ℎ𝑑", and why 𝑀) 
behaves differently from 𝑀".  

Note that Detector 1 and Detector 2 do not need to retrain 
their LSTM models for every new point in time. As long as their 
current LSTM models are able to make a prediction such that 
the corresponding AARE values are under the corresponding 
detection thresholds, the LSTM models can be used again. This 
feature enables ReRe to remain lightweight and provide 
anomaly detection in real-time.  

IV. EXPERIMENT RESULTS 
In this section, we evaluate the detection performance of 

ReRe by designing three experiments where we compare ReRe 
with RePAD [16], ADT [4] and ADV [4]. Recall that ADT and 
ADV are two open-source statistical-based approaches 
introduced by Twitter, while RePAD is a real-time time series 
anomaly detection approach. Recall that Luminol [12] is also an 
open-source anomaly detection approach. However, Luminol 
only produces a score for each data point in the target time series 
without being able to indicate which one is anomaly. Due to this 
reason, luminol was not chosen for the comparison. All the 
experiments were performed on a commodity laptop running 
macOS 10.15.1 with 2.6 GHz 6-Core Intel Core i7 and 16GB 
DDR4 SDRAM. 

TABLE I.  THREE REAL-WORLD TIME-SERIES DATASETS  

Name Time Period # of data points Time 
Interval 

CPU-cc2 From 2014-04-10, 00:04 
to 2014-04-24, 00:09 

4032 5 min 

CPU-c53 From 2014-02-14, 14:30 
to 2014-02-28, 14:30 

4032 5 min 

real47 Not provided 1427 1 hour 
 

In the first two experiments, two real-world time series 
datasets called ec2-cpu-utilization-825cc2 and rds-cpu-
utilization-cc0c53 were chosen from NAB [2] to evaluate the 
four abovementioned approaches. These two datasets are 
separately abbreviated as CPU-cc2 and CPU-c53 in this paper. 
The last dataset, called real47, was selected from the Yahoo 
benchmark datasets [15]. TABLE I lists the details of these 
datasets. Note that the interval time between data points in the 
first two datasets are 5 minutes, whereas the interval time 
between data points in the last dataset is one hour. 

TABLE II shows all parameter settings for each of the four 
approaches. Note that the Look-Back parameter (i.e., 𝑏) is the 
only parameter we need to set for both ReRe and RePAD. Since 
both approaches are based on short-term historic data points to 

detect anomalies, we followed the setting used in [16] (i.e., 𝑏 =
3) for both ReRe and RePAD in all the experiments. On the 
other hand, it is a requirement to set parameter k (which indicates 
the maximum number of anomalies to detect) for both ADT and 
ADV. We followed the setting mentioned in [4] and set k as 
0.02. Furthermore, it is also a requirement to set the period 
parameter for ADV. In the first two experiments, we set this 
parameter as 1440 according to the setting suggested by [4]. 
However, in the last experiment, the same setting was 
unaccepted by ADV since the value of 1440 is more than the 
total length of the real47 dataset. In order to fairly evaluate 
ADV, we set this parameter as 300, 500, and 700 to see how 
ADV performs under each of these settings. It is worth noting 
that ADT was unable to execute the last experiment since ADT 
requires the target dataset to be two times longer than real47.  

TABLE II.  PAPAMETER SETTING OF THE THREE EXPERIMENTS 

Approach Experiment 1 Experiment 2 Experiment 3 
ReRe 𝑏 = 3 𝑏 = 3 𝑏 = 3 

RePAD 𝑏 = 3 𝑏 = 3 𝑏 = 3 
ADT 𝑘 = 0.02 𝑘 = 0.02 unexecutable  
ADV 𝑘 = 0.02 

period=1440 
𝑘 = 0.02 

period=1440 
𝑘 = 0.02 

period=300, 500, 700 

A. Experiment 1 
Fig. 4 illustrates all the data points in the CPU-cc2 dataset 

and the detection results of the four approaches on the dataset. 
In this dataset, there are two anomalies labeled by human 
experts, and both of them are marked as red circles in Figs. 4 
and 5.  

When ReRe and RePAD were individually employed, they 
made some false detections in the beginning. However, this 
situation did not happen frequently after ReRe and RePAD 
learned the data pattern in the time series. We can see that ReRe 
then produced less false detections than RePAD, especially in 
the period before the first real anomaly, implying that 
employing the two LSTM models with the two long-term self-
adaptive detection thresholds is able to mitigate false positives.  

In order to clearly view the detection results of all the 
approaches, Fig. 5 depicts a close-up of the detection results. 
Apparently, both ReRe and RePAD are the only two 
approaches that are able to detect the first anomaly on time (i.e., 
when this anomaly occurs) and to detect the second anomaly 
proactively around 5 minutes earlier than the occurrence of the 
second anomaly. On the contrary, both ADT and ADV are only 
able to detect the second anomaly on time, without being able 
to detect the first anomaly at all. Besides, ADT and ADV made 
a lot of false positives after the occurrence of the second 
anomaly, implying that these two approaches are unable to 
adapt to the pattern change in the time series. 

TABLE III.  THE DETECTION PERFORMANCE OF THE FOUR APPROACHES 
ON THE CPU-CC2 DATASET. 

Approach Precision Recall F-score 
K=0 K=7 K=0 K=7 K=0 K=7 

ReRe 0.0513 0.5263 1 1 0.0976 0.6896 
RePAD 0.0487 0.5000 1 1 0.0929 0.6667 

ADT 0.0125 0.1648 0.5 0.5 0.0244 0.2479 
ADV 0.0125 0.1648 0.5 0.5 0.0244 0.2479 



 

 

TABLE III summaries the precision, recall, and F-score of 
all the approaches on the CPU-cc2 dataset. Recall that F-score 
is defined as the weighted harmonic mean of the precision and 
recall of the test as below:   

F-score = 2 × +,-./0/12×,-.455
+,-./0/12',-.455

 (3) 

The F-score reaches the best value, meaning perfect 
precision and recall, at a value of 1. The worst F-score would 
be a value of 0, implying the lowest precision and the lowest 
recall. Note that both ReRe and RePAD are capable of 
proactive anomaly detection, thus adopting traditional point-
wise metrics to measure them is unsuitable and unfair. 
Therefore, we adopt and revise the evaluation method proposed 
by [14] to provide appropriate and fair comparison. More 
specifically, if any anomaly occurring at time point 𝑡 can be 
detected within a time period ranging from time point 𝑡 − 𝐾 to 
time point 𝑡 + 𝐾, we say that this anomaly is correctly detected. 
From TABLE III, it is clear that when the traditional point-wise 
metrics (i.e., Precision at 𝐾 = 0, Recall at 𝐾 = 0, and F-score 
at 𝐾 = 0) are used, ReRe performs the best among the four 
approaches. However, these metrics cannot reflect its capability 
when it comes to proactive detection. When we followed [14] 

and set  𝐾 as 7, we can see the precision, recall, and F-score of 
each approach all increase. Nevertheless, ReRe still 
outperforms the rest of the approaches.  

TABLES IV and V list the time performance of both ReRe 
and RePAD on detecting anomalies in the CPU-cc2 dataset. 
Note that ADT and ADV were not included in this comparison 
since both of them are statistical based without using LSTM. 
Apparently, ReRe needs to retrain its LSTM models more 
frequently than RePAD due to the employment of two LSTMs. 
However, if we take the whole dataset into consideration, the 
LSTM retraining ratio of ReRe is only 8.84% (=356/4028), 
which is very low. Due to this reason, the average time required 
by ReRe to detect each data point (i.e., 0.039 sec) is slightly 
higher than that required by RePAD (i.e., 0.026 sec). Note that 
the detection time for each data point includes both the 
corresponding LSTM retraining time (if the retraining is 
necessary) and the corresponding detection time. The results 
confirm that employing the two LSTMs does not introduce 
significant computational complexity and load to the 
underlying laptop, indicating that ReRe is lightweight and able 
to provide anomaly detection in real-time.

 
Fig. 4. The detection results of ReRe, RePAD, ADT, and ADV on the CPU-cc2 dataset. Note that this dataset has two anomalies labeled by human experts, marked 
as red circles. 

 
Fig. 5. A close-up of the detection results for the first and second anomalies on the CPU-cc2 dataset. 



 

 

TABLE IV.  THE LSTM RETRAINING PERFORMANCE OF RERE AND 
REPAD ON THE CPU-CC2 DATASET. 

Approach # of data points that requires 
LSTM Retraining 

LSTM retraining ratio 

ReRe 356 8.84% (=356/4028) 
RePAD 83 2% (=83/4028) 

TABLE V.  THE TIME CONSUMPTION OF RERE AND REPAD ON THE CPU-
CC2 DATASET. 

Approach Average Detection Time (sec) Standard Deviation (sec) 
ReRe 0.039 0.075 

RePAD 0.026 0.050 

B. Experiment 2 
In the second experiment, the CPU-c53 dataset was used to 

evaluate the four approaches. This dataset contains two real 
anomalies labeled by human experts. Fig. 6 illustrates the whole 
dataset, the two anomalies (marked as red circles), and all 
detection results of all the four approaches.  In order to clearly 
view the detection results of all the approaches, Fig. 7 depicts a 
close-up of the detection results for the first and the second 
anomalies on CPU-c53. Similar to the first experiment, both 
ReRe and RePAD generated some false positives before they 
learned the data pattern of the time series. This is unavoidable 
since ReRe and RePAD learn the time series entirely by 
themselves without any domain knowledge or human 
intervention. TABLE VI summaries the detection performance 
of each approach under two different values of K. When K is set 
to 0, both ADT and ADV have the highest value of recall (i.e., 
1) since they are able to detect the two anomalies on time. 
However, they produce a high number of false positives (which 
can be seen from both Figs. 6 and 7), which considerably impact 
their performance in precision and F-score. These false positives 
also demonstrate that both ADT and ADV are unable to adapt to 
the pattern changes in the time series.  

Apparently, ReRe and RePAD perform better than ADT and 
ADV in terms of precision and F-score when K=0, which as 
mentioned earlier is not a suitable and fair evaluation for ReRe 
and RePAD. When K is enlarged to 7, which is a suggested 
measure according to [14], we can see that ReRe outperforms 
the other three approaches in all the metrics due to its good 
performance when it comes to true positives, false positives, and 
false negatives. Overall speaking, ReRe offers higher precision, 
recall, and F-score than the other three approaches, no matter if 
K is set to 0 or 7. The detection performance of ReRe is 
satisfactory, given that ReRe learns and adapts to the data 
patterns of the time series completely by itself without obtaining   
knowledge from the dataset or help from human in advance.  

TABLE VI.  THE DETECTION PERFORMANCE OF THE FOUR APPROACHES 
ON THE CPU-C53 DATASET. 

Approach Precision Recall F-score 
K=0 K=7 K=0 K=7 K=0 K=7 

ReRe 0.045 0.533 0.5 1 0.0825 0.695 
RePAD 0.037 0.457 0.5 1 0.0689 0.627 

ADT 0.025 0.174 1 1 0.0487 0.296 
ADV 0.025 0.174 1 1 0.0487 0.296 

 

Table VII and VIII list the time performance of ReRe and 
RePAD on detecting anomalies in the CPU-c53 dataset. When 
ReRe is employed, it requires to retrain its LSTM models at 111 
data points, which is approximately 1.88 (=111/59) times of that 
required by RePAD. Nevertheless, the LSTM retraining ratio of 
ReRe is very low since it is only 2.76% (=111/4028), implying 
that the overhead introduced by ReRe is insignificant. This also 
explains why the average detection time taken by ReRe is just a 
little longer than the one taken by RePAD. In other words, the 
results confirm that ReRe is a cost-effective and time-efficient 
anomaly detection approach.  

 

 
Fig. 6. The detection results of the four approaches on the CPU-c53 dataset. Note that this dataset has two anomalies labeled by human experts, marked as red 
circles. 



 

 

 
Fig. 7. A close-up of the detection results for the first and second anomalies on the CPU-c53 dataset.

TABLE VII.  THE LSTM RETRAINING PERFORMANCE OF RERE AND 
REPAD ON THE CPU-C53 DATASET. 

Approach # of data points that requires 
LSTM retraining 

LSTM retraining ratio 

ReRe 111 2.76% (=111/4028) 
RePAD 59 1.46% (=59/4028) 

TABLE VIII.  THE TIME CONSUMPTION OF RERE AND REPAD ON THE CPU-
C53 DATASET 

Approach Average Detection Time (sec) Standard Deviation (sec) 
ReRe 0.018 0.032 

RePAD 0.015 0.024 

C. Experiment 3 
In the last experiment, we chose the real-world dataset real47 

from the Yahoo benchmark datasets [15] to evaluate the four 
approaches since the anomalous data points in this dataset are 
considered particularly challenging to detect [11]. As illustrated 
in Fig. 8, this dataset contains 10 anomalous data points marked 
as red circles. Although these anomalous data points have 
normal values between 0.2 and 0.8, their shapes and patterns are 
unusual, which is the main reason why they are considered as 
anomalies by human experts.  

As mentioned earlier, ADT is unable to execute on this 
dataset since ADT demands at least twice the amount of data 
points compared to what is present in real47. Hence, we are 
unable to measure the performance of ADT in this experiment. 
In addition, due to the short length of the real47 dataset, setting 
parameter period to be 1440 does not work for ADV. Hence, we 
evaluate the performance of ADV under three different settings 
(i.e., period=300, period=500, and period=700) for fair 
comparison. 

Fig. 9 depicts a close-up of the detection results for the 10 
anomalies in the real47 dataset. When ReRe and RePAD were 

separately employed, they made less false positives than ADV, 
implying that both ReRe and RePAD are able to learn the data 
distribution of the dataset and promptly adapt to pattern changes. 
According to TABLE IX, ReRe and RePAD provide the same 
superior detection performance in all the metrics when K=3 
(which is a suggested measure according to [14] for any hourly-
interval dataset). The result confirms that the short-term Look-
Back and Predict-Forward strategy makes ReRe and RePAD 
able to detect these tough anomalies.  

On the contrary, when ADV with period=300 was tested, it 
made neither true positives nor false positives since it considered 
all data points as normal. For this reason, the corresponding 
precision and recall are all zero, which makes it impossible to 
calculate the F-score based on Equation 1.  

When ADV with period=500 was employed, the situation 
did not improve since ADV made several false positives for the 
last anomaly without being able to detect the other anomalies. 
Setting period as 700 for ADV seems a better choice since the 
corresponding precision, recall, and F-score increase. 
Nevertheless, ADV is still unable to outperform ReRe and 
RePAD. 

TABLE IX.  THE DETECTION PERFORMANCE OF RERE, REPAD, AND ADV 
ON THE REAL47 DATASET. 

Approach Precision Recall F-score 
K=0 K=3 K=0 K=3 K=0 K=3 

ReRe 0.125 0.7 0.1 1 0.111 0.824 
RePAD 0.125 0.7 0.1 1 0.111 0.824 
ADV  

(period =300) 
0 0 0 0 n/a n/a 

ADV 
(period =500) 

0 0 0 0 n/a n/a 

ADV 
(period =700) 

0 0.308 0 0.036 n/a 0.064 



 

 

 
Fig. 8. The detection results of ReRe, RePAD, and ADV on the real47 dataset. Note that this dataset contains ten anomalies labeled by human experts, and they 
are marked as red circles. 

 

 
Fig. 9. A close-up of the detection results for ten anomalies on the real47 dataset. 

TABLE X.  THE LSTM RETRAINING PERFORMANCE OF RERE AND 
REPAD ON THE REAL47 DATASET. 

Approach # of data points that requires 
LSTM retraining 

LSTM retraining ratio 

ReRe 31 2.18% (=31/1422) 
RePAD 31 2.18% (=31/1422) 

TABLE XI.  THE TIME CONSUMPTION OF RERE AND REPAD ON THE 
REAL47 DATASET. 

Approach Average Detection Time (sec) Standard Deviation (sec) 

ReRe 0.016 0.029 
RePAD 0.015 0.028 

TABLE X and XI summarize the time performance of ReRe 
and RePAD on detecting anomalies in the real47 dataset. Both 
ReRe and RePAD require to retrain their LSTM models at 31 
data points, and the corresponding LSTM retraining ratio is low, 
only 2.8% (=31/1422), demonstrating the cost effectiveness of 

both ReRe and RePAD on the dataset. Due to the same reason, 
the average detection time required by these two approaches are 
also similar to each other, with similar standard deviations. The 
results show that even though ReRe employs one more LSTM 
with one more detection threshold, it is still very lightweight and 
able to conduct anomaly detection in real-time. 

V. CONCLUSION AND FUTURE WORK 
In this paper, we have introduced ReRe for detecting 

anomalies in time series in a real-time manner. ReRe is able to 
work on any time series without needing to know the 
corresponding data distribution/patterns or data labels. In fact, 
ReRe requires no training data since it does not need to go 
through an off-line training process. This ready-to-go feature 
makes ReRe a practical solution in many real-world scenarios 
since it significantly reduces human effort.  

After a very short probation period, ReRe starts its detection 
function without requiring a person to manually set detection 



 

 

thresholds. ReRe dynamically adjusts its two long-term 
detection thresholds over time and retrains its two LSTM models 
when necessary. These features enable ReRe to adapt to pattern 
changes in the target time series and detect anomalies in a time-
efficient and real-time manner. Experiments based on real-world 
time series data demonstrate that ReRe provides satisfactory 
detection performance as compared with the other three state-
of-the-art approaches. In addition, the lightweightness of ReRe 
makes it a cost-effective solution to be deployed on commodity 
machines.  

As future work, we plan to further improve the detection 
performance of ReRe, especially in terms of false positives, by 
investigating hybrid solutions in a lightweight manner. In 
addition, we would like to extend ReRe for large-scale time 
series from the eX3 HPC cluster [17] by referring to [18][19] and 
designing it in a parallel and distributed way. 
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