

XXX-X-XXXX-XXXX-X/XX/$XX.00 ©20XX IEEE

This work was supported by the project eX3 - Experimental Infrastructure for Exploration of Exascale Computing funded by the Research Council of Norway
under contract 270053 and the scholarship under project number 80430060 supported by Norwegian University of Science and Technology.

ReRe: A Lightweight Real-time Ready-to-Go
Anomaly Detection Approach for Time Series

Ming-Chang Lee1, Jia-Chun Lin2, and Ernst Gunnar Gran3

1,2,3Department of Information Security and Communication Technology, Norwegian University of Science and Technology,
Ametyst-bygget, 2815 Gjøvik, Norway

3Simula Research Laboratory, 1364 Fornebu, Norway

1 ming-chang.lee@ntnu.no
2jia-chun.lin@ntnu.no
3ernst.g.gran@ntnu.no

3rd June 2020

Note: This is a draft preprint of a paper to be published in the 44th IEEE Computer Society Signature
Conference on Computers, Software, and Applications (COMPSAC 2020), IEEE. The final paper may be
different from this version. Please use the following citation for this paper:
Ming-Chang Lee, Jia-Chun Lin, and Ernst Gunnar Gran, “ReRe: A Lightweight Real-time Ready-to-Go
Anomaly Detection Approach for Time Series,” In Proceedings of the 44th IEEE Computer Society
Signature Conference on Computers, Software, and Applications (COMPSAC 2020), IEEE.

ReRe: A Lightweight Real-time Ready-to-Go
Anomaly Detection Approach for Time Series

Ming-Chang Lee
Department of Information Security and

Communication Technology
Norwegian University of Science and

Technology
Gjøvik, Noway

ming-chang.lee@ntnu.no

Jia-Chun Lin
Department of Information Security and

Communication Technology
Norwegian University of Science and

Technology
Gjøvik, Noway

jia-chun.lin@ntnu.no

Ernst Gunnar Gran
Department of Information Security and

Communication Technology
Norwegian University of Science and

Technology, Gjøvik, Noway
Simula Research Laboratory, Fornebu,

Norway
ernst.g.gran@ntnu.no

Abstract—Anomaly detection is an active research topic in
many different fields such as intrusion detection, network
monitoring, system health monitoring, IoT healthcare, etc.
However, many existing anomaly detection approaches require
either human intervention or domain knowledge, and may suffer
from high computation complexity, consequently hindering their
applicability in real-world scenarios. Therefore, a lightweight and
ready-to-go approach that is able to detect anomalies in real-time
is highly sought-after. Such an approach could be easily and
immediately applied to perform time series anomaly detection on
any commodity machine. The approach could provide timely
anomaly alerts and by that enable appropriate countermeasures
to be undertaken as early as possible. With these goals in mind,
this paper introduces ReRe, which is a Real-time Ready-to-go
proactive Anomaly Detection algorithm for streaming time series.
ReRe employs two lightweight Long Short-Term Memory
(LSTM) models to predict and jointly determine whether or not
an upcoming data point is anomalous based on short-term
historical data points and two long-term self-adaptive thresholds.
Experiments based on real-world time-series datasets demonstrate
the good performance of ReRe in real-time anomaly detection
without requiring human intervention or domain knowledge.

Keywords—Time-series anomaly detection, lightweight LSTM,
unsupervised learning, real time, self-adaptive threshold

I. INTRODUCTION
A time series is a series of data points generated by for

instance system monitoring tools, smart meters, stock exchange,
or IoT devices, etc., where the data points are evenly indexed in
time order. Anomaly detection refers to the identification of
abnormal or novel events embedded in a time series [1]. An
abnormal event is usually called an anomaly, which could be a
point anomaly or a temporal anomaly. A point anomaly, also
called an outlier, happens when a single data point is outside the
expected range, whereas a temporal anomaly occurs when the
pattern of the time series changes and lasts for a while [2].

In the last decade, a number of approaches and methods have
been introduced for time series anomaly detection in different
areas such as intrusion detection, IP networks, software bug
detection, system health detection, smart homes, healthcare, etc.
Examples include [2][5][9-14]. However, most approaches
require either domain knowledge or human intervention. For

instances, they might require humans to collect sufficient and
representative training data, manually label training data,
conduct an off-line training process, understand the distribution
of the target time series, perform parameter tuning, and/or
determine appropriate thresholds empirically. These
requirements consequently limit the applicability and usefulness
of these approaches in practice.

It would be highly valuable to facilitate a ready-to-go and
self-adaptive anomaly detection approach for time series where
human intervention and domain knowledge are not needed.
Such an approach could be easily and immediately utilized and
could adapt to pattern and distribution changes in any time
series. Furthermore, it might also be highly valuable to provide
a real-time and proactive anomaly detection approach for time
series since such an approach helps to trigger prompt
troubleshooting and enables appropriate countermeasures to be
undertaken as soon as possible. Last but not least, it would be
highly beneficial to offer a lightweight anomaly detection
approach with all above-mentioned features because such an
approach can be deployed on any commodity machine, such as
desktops, laptops, and mobile phones.

In this paper, we introduce ReRe, which stands for Real-time
Ready-to-go Proactive Time Series Anomaly Detection based
on Long Short-Term Memory (LSTM) [7]. The goal of ReRe is
to provide accurate, real-time, and lightweight anomaly
detection for time series without requiring domain knowledge or
human intervention. In other words, ReRe must work
completely by itself to learn the data distribution of the target
time series in an online manner, dynamically determine its
detection threshold to adapt to pattern changes in the target time
series, and detect any anomalous data points either proactively
or on time. To achieve these goals, ReRe employs two LSTM
models and two long-term self-adaptive detection thresholds to
predict and jointly decide if the upcoming data point in the target
time series is anomalous or not. The two LSTM models run in
parallel with a simple network structure and are always trained
with short-term historical data points. These features enable
lightweight and real-time LSTM training and anomaly
detection. By dynamically and individually adjusting each
threshold over time, the two LSTM models are able to tolerate
minor pattern changes and detect anomalies in the target time

series. Note that the two thresholds are determined differently.
One is determined by taking all data points collected so far into
consideration. The other one is determined by taking all data
points that are considered normal into consideration. The
purpose is to provide two levels of sensitivity for accurate
anomaly detection.

To demonstrate the detection performance of ReRe, we
conducted experiments based on real-world time series datasets
provided by the Numenta Anomaly Benchmark (NAB) [3] and
the Yahoo benchmark datasets [15]. We compared ReRe with
three state-of-the-art anomaly detection approaches. The results
show that ReRe outperforms the other approaches in precision,
recall, and F-score. In addition, the results also demonstrate that
ReRe is lightweight, computationally efficient, and able to
conduct anomaly detection in real-time. The contributions of
this paper are as follows:

1. The proposed ReRe is a generic, ready-to-go, and
completely unsupervised learning approach. It can be easily
and immediately applied to detect anomalies in any
streaming time series without knowing the distribution of
the target time series or requiring human effort to pre-train
a learning model, pre-build a data model, tune parameters,
or set a detection threshold manually.

2. ReRe is both lightweight and cost-effective due to the
employed simple LSTM network structure and the short-
term Look-Back and Predict-Forward strategy [16]. These
features enable ReRe to provide anomaly detection in real-
time.

3. ReRe is able to tolerate and adapt to pattern changes in the
target time series due to its LSTM retraining characteristic
and the two long-term self-adaptive detection thresholds.

The rest of the paper is organized as follows: Section II
describes related work. In Section III, we introduce the details
of ReRe. Section IV presents and discusses the experiments and
the corresponding results. In Section V, we conclude this paper
and outline future work.

II. RELATED WORK
Over the years, a number of anomaly detection approaches

have been introduced. Statistical learning approaches are one of
the categories. These approaches work by fitting a statistical
model to a given set of normal data and then use the model to
determine whether an upcoming data point fits this model or not.
If the data point has a low probability to be generated from the
model, it is considered anomalous. For instance, Twitter has
proposed two anomaly detection algorithms, called
AnomalyDetectionTs (ADT for short), and
AnomalyDetectionVec (ADV for short). Both of them have
been implemented and included in an open-source R package
[4]. ADT is designed to detect one or more statistically
significant anomalies in a given time series, while ADV is
designed to detect one or more statistically significant anomalies
in a given vector of observations without timestamp information.
Since ADT and ADV are statistical based, they need sufficient
amount of data points in the target time series and consequently
might not be an appropriate solution to detect anomalies in
streaming time series. In addition, these two approaches are
parameter sensitive. They require human experts to set

appropriate values to their parameters in order to achieve good
detection performance.

Luminol [12] is another anomaly detection approach
proposed by LinkedIn for time series. Luminol is implemented
as an open-source Python library for identifying anomalies in
real user monitoring (RUM) data for LinkedIn pages and
applications. Given a time series, Luminol calculates an
anomaly score for each data point in the time series. If a data
points has a high score, it means that this data point is likely to
be anomalous as compared with other data points in the time
series. In other words, human experts still need to further
determine which data points are anomalies based on their
experiences. In addition, Luminol suffers from similar issues as
ADT and ADV since it is also statistical based.

Machine learning approaches represent another category of
anomaly detection. Most approaches belonging to this category
require either domain knowledge or human intervention. For
example, Yahoo introduced EGADS [9] to detect anomalies on
time series based on a collection of anomaly detection and
forecasting models. However, EGADS requires to model the
target time series so as to predict a data value later used by its
anomaly detection module and its altering module. Lavin and
Ahmad [2] proposed Hierarchical Temporal Memory (HTM) to
capture changing patterns in time series. However, HTM
requires 15% of a training dataset to be non-anomalous so that
it can used this data to train its neural network. Different from
EGADS and HTM, the approach proposed in this paper (i.e.,
ReRe) does not have these requirements.

Siffer et al. [10] proposed a time series anomaly detection
approach based on Extreme Value Theory. This approach makes
no assumption on the distribution of time series and requires no
threshold manually set by humans. However, this approach
needs a long time period to do necessary calibration before
conducting anomaly detection. According to [10], the
calibration process needs at least 1000 data points, which is
much longer than the probation period required by ReRe.
Greenhouse [6] is a zero-positive anomaly detection algorithm
for time series based on LSTM. Greenhouse requires all data
points in its training datasets to be non-anomalous, making
Greenhouse a kind of supervised learning approach. During the
training phase, Greenhouse adopts a Look-Back and Predict-
Forward strategy to detect anomalies. For a given time point t, a
window of most recently observed values of length B is used as
“Look-Back” to predict a subsequent window of values of length
F as “Predict-Forward”. This feature enables Greenhouse to
adapt to pattern changes in the training data. However, if the
training data is not representative, Greenhouse might not be able
to capture and accommodate pattern changes in real-world time
series.

RePAD [16] is a real-time time series anomaly detection
approach also based on the Look-Back and Predict-Forward
strategy. RePAD utilizes a single LSTM model trained with
short-term historic data points to be the predictor and detector.
Together with the LSTM model, a dynamically adjusted long-
term detection threshold is utilized to determine if each data
point in the target time series is anomalous or not. According to
the experiment results shown in [16], RePAD is able to detect
anomalies either proactively or on time, but RePAD suffers from

some undesirable false positives. Different from RePAD, ReRe
employs two LSTM models and two long-term self-adaptive
thresholds to detect anomalies in a parallel manner. The two
thresholds provide two levels of detection sensitivity aiming to
keep a high true positive rate and a low false positive rate. The
details of ReRe will be introduced in the next section, and the
comparison between ReRe, ADT, ADV, and RePAD will be
shown in Section IV.

III. THE DETAILS OF RERE
As stated earlier, ReRe utilizes the Look-Back and Predict-

forward strategy based on short-term historic data points. More
specifically, ReRe utilizes two LSTMs to individually predict
each data point in the target time series based on the data values
observed at the past 𝑏 continuous time points, and then
determine if the next data point is anomalous or not. Note that 𝑏
is called the Look-Back parameter, and that b is a small integer,
implying that training data used to train the two LSTMs is small
in size (i.e., 𝑏 data points). Therefore, a simple network structure
should be sufficient for the two LSTMs. Due to this, each LSTM
consists of only one hidden layer with 10 hidden units. Each
LSTM is always trained with the learning rate of 0.15, which
enables a fast learning speed and provides a satisfactory learning
result. With respect to epoch (which is defined as one forward
pass and one backward pass of all the training data), it is clear
that too many epochs might overfit the training data, whereas
too few epochs may underfit the training data. To address this
issue, ReRe employs Early Stopping [8] to automatically
determine the number of epochs for each LSTM. In this paper,
Early Stopping always chooses a number between 1 and 50.

ReRe consists of one main function and two sub-procedures.
One is called Detector 1, and the other is called Detector 2. Let
𝑡 be the current time point. Note that 𝑡 starts at 0, which is the
moment when ReRe is launched. As illustrated in Fig. 1, when
ReRe is launched, this approach will go through a short
probation period with a length of 2𝑏 − 1 time points (see lines
3 to 11, Fig. 1). During this period, ReRe keeps training an
LSTM model based on the past 𝑏 observed data points, uses the
corresponding LSTM model to predict the value of the data
point at the next time point, and then derives the corresponding

AARE values. Note that AARE stands for Average Absolute
Relative Error. A low AARE value indicates that the predicted
values are close to the observed values. During the probation
period, everything created or generated will be duplicated and
used later by Detector 1 and Detector 2.

Whenever time advances and 𝑡 ≥ 2𝑏 − 1 , ReRe invokes
Detector 1 and Detector 2 to separately perform anomaly
detection by passing 𝑡 and 𝑣! to both of them. If both Detector 1
and Detector 2 return that 𝑣! is abnormal (See line 14 of Fig. 1),
ReRe concludes that 𝑣! is an anomaly and immediately reports
it to trigger troubleshooting or countermeasures.

Fig. 2 shows the algorithm of Detector 1 where 𝑀" is a
duplicate of the LSTM model created in the probation period.
Whenever receiving 𝑡 and 𝑣! from ReRe, Detector 1 calculates
𝐴𝐴𝑅𝐸!# based on Equation 1:

𝐴𝐴𝑅𝐸!# =
1

𝑡 − 𝑏 + 1 ∙ /
0𝑣$ − 𝑣𝑦#1 0

𝑣$

!

$%&

	 (1)

where 𝑣$ is the observed data value at time point 𝑦, and 𝑣$#4 is the
forecast data value predicted by 𝑀" at 𝑦 , where 𝑦 = 𝑏, 𝑏 +
1,… , 𝑡. After that, as shown by lines 3 to 9 of Fig. 2, Detector 1

calculates a detection threshold, denoted by 𝑡ℎ𝑑" , by
considering all previously calculated AARE values (i.e.,
𝐴𝐴𝑅𝐸&# , 𝐴𝐴𝑅𝐸&'"# , …, 𝐴𝐴𝑅𝐸!#) based on the Three-Sigma Rule
[5], which is a commonly used rule for anomaly detection.

If 𝐴𝐴𝑅𝐸!# is smaller than or equal to 𝑡ℎ𝑑" (see line 10 of Fig.
2), it means that 𝑣! is similar to previous data points. In this case,
Detector 1 replies to ReRe that 𝑣! is normal and keeps using the
current LSTM model (i.e., 𝑀") to predict the next data point
𝑣!'"#9. However, if 𝐴𝐴𝑅𝐸!# is greater than 𝑡ℎ𝑑" , implying that
either the data pattern of the target time series has changed or an
anomaly might happen, Detector 1 retrains its LSTM model by
taking the most recent 𝑏 data points, i.e., [𝑣!(& , 𝑣!(&'"… , 𝑣!("],
as the training data. After that, Detector 1 uses this new LSTM
model to re-predict 𝑣!#1 and then re-calculates the corresponding
𝐴𝐴𝑅𝐸!# (see lines 13 to 15 of Fig. 2).

ReRe algorithm
Input: Data points in the target time series
Output: Anomaly notifications
1: While time has advanced {
2: Let 𝑡 be the current time point and 𝑣" be the data point collected at 𝑡;
3: if 𝑡 = 𝑏 − 1{ // i.e.,	𝑡 = 2 if 𝑏 = 3
4: Train an LSTM model called 𝑀# with training data [𝑣$, 𝑣#, … , 𝑣"];
5: Use 𝑀# to predict 𝑣"%#&-;
6: Let 𝑀' and 𝑣"%#&&- be the duplicates of 𝑀# and 𝑣"%#&- respectively;}
7: else if 𝑡 > 𝑏 − 1 and 𝑡 < 2𝑏 − 1 { //i.e.,	2 < 𝑡 < 5 if 𝑏 = 3
8: Calculate 𝐴𝐴𝑅𝐸"& based on Equation 1;
9: Retrain 𝑀# with training data [𝑣"()%#, 𝑣"()%'… , 𝑣"];
10: Use 𝑀# to predict 𝑣"%#&-;
11: Let 𝐴𝐴𝑅𝐸"&&, 𝑀', and 𝑣"%#&&- be the duplicates of 𝐴𝐴𝑅𝐸"&, 𝑀#, and 𝑣"%#&- respectively;}
12: else if 𝑡 ≥ 2𝑏 − 1{ //The probation period has passed.
13: Invoke Detector 1 and Detector 2 by passing 𝑡 and 𝑣" to both of them;
14: if both Detector 1 and Detector 2 consider 𝑣" abnormal{
15: ReRe reports 𝑣" as an anomaly immediately;}}}

Fig. 1. The algorithm of ReRe.

Detector 1
Input: 𝑡 and 𝑣"
Output: A returned message to ReRe
1: Obtain	𝑡 and 𝑣" from ReRe;
2: Calculate 𝐴𝐴𝑅𝐸"& based on Equation 1;
3: Let 𝑠𝑢𝑚 = 0, 𝑥 = 0, and 𝑐 = 0;
4: while 𝑥 ≤ 𝑡 − 𝑏{	𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝐴𝐴𝑅𝐸)%*& ;	𝑥 = 𝑥 + 1;}
5: 𝜇# = 𝑠𝑢𝑚/(𝑡 − 𝑏 + 1);
6: Reset 𝑠𝑢𝑚 and 𝑥 to be zero;
7: while 𝑥 ≤ 𝑡 − 𝑏{ 𝑠𝑢𝑚 = 𝑠𝑢𝑚 + (𝐴𝐴𝑅𝐸)%*& − 𝜇#)'; 𝑥 = 𝑥 + 1;}
8: 𝜎# = B𝑠𝑢𝑚/(𝑡 − 𝑏 + 1);
9: 𝑡ℎ𝑑# = 𝜇# + 3𝜎#;
10: if 𝐴𝐴𝑅𝐸"& ≤ 𝑡ℎ𝑑#{
11: Return message “𝑣" is normal” to ReRe; Use 𝑀# to predict 𝑣"%#&- ;}
12: else{
13: Retrain a new LSTM by taking [𝑣"(), 𝑣"()%#… , 𝑣"(#] as the training data;
14: Use the new trained LSTM to re-predict 𝑣"&E ;
15: Re-calculate 𝐴𝐴𝑅𝐸"& using Equation 1;}
16: if 𝐴𝐴𝑅𝐸"& ≤ 𝑡ℎ𝑑#{
17: Return message “𝑣" is normal” to ReRe; Replace 𝑀# with the new trained LSTM;}
18: else{
19: Return message “𝑣" is abnormal” to ReRe;}}

Fig. 2. The algorithm of Detector 1.

Detector 2
Input: 𝑡 and 𝑣"
Output: A returned message to ReRe
1: Obtain	𝑡 and 𝑣" from ReRe;
2: Calculate 𝐴𝐴𝑅𝐸"&& based on Equation 2;
3: Let 𝑠𝑢𝑚 = 0, 𝑥 = 0, and 𝑐 = 0;
4: while 𝑥 ≤ 𝑡 − 𝑏{
5: if 𝑣)%* was considered normal by Detector2{ 𝑠𝑢𝑚 = 𝑠𝑢𝑚 + 𝐴𝐴𝑅𝐸)%*&& ; 𝑐 = 𝑐 + 1;}
6: 𝑥 = 𝑥 + 1;}
7: 𝜇' = 𝑠𝑢𝑚/𝑐;
8: Reset 𝑠𝑢𝑚 and 𝑥 to be zero;
9: while 𝑥 ≤ 𝑡 − 𝑏{
10: if 𝑣)%* was considered normal by Detector2{ 𝑠𝑢𝑚 = 𝑠𝑢𝑚 + (𝐴𝐴𝑅𝐸)%*&& − 𝜇')'; 𝑐 = 𝑐 + 1;}
11: 𝑥 = 𝑥 + 1;}
12: 𝜎' = B𝑠𝑢𝑚/𝑐;
13: 𝑡ℎ𝑑' = 𝜇' + 3𝜎';
14: if 𝐴𝐴𝑅𝐸"&& ≤ 𝑡ℎ𝑑'{
15: Return message “𝑣" is normal” to ReRe; Use 𝑀' to predict 𝑣"%#&&-;}
16: else{
17: Retrain an LSTM by taking [𝑣"(), 𝑣"()%#… , 𝑣"(#] as the training data;
18: Use the new trained LSTM model to predict 𝑣"&&F ;
19: Re-calculate 𝐴𝐴𝑅𝐸"&& using Equation 2;
20: if 𝐴𝐴𝑅𝐸"&& ≤ 𝑡ℎ𝑑'{
21: Return message “𝑣" is normal” to ReRe; Replace 𝑀' with the new trained LSTM model;}
22: else{
23: Return message “𝑣" is abnormal” to ReRe;}}

Fig. 3. The algorithm of Detector 2.

If the new 𝐴𝐴𝑅𝐸!# is smaller than or equal to 𝑡ℎ𝑑" (see line
16), Detector 1 considers that the data pattern in the time series
has slightly changed and that 𝑣! is normal. In this case, Detector
1 replaces 𝑀" with this new trained LSTM model to adapt to the
pattern change. On the contrary, if the new 𝐴𝐴𝑅𝐸!# is still larger
than 𝑡ℎ𝑑" (see line 18 of Fig. 2), Detector 1 considers that 𝑣! is
abnormal since the LSTM trained with the most recent data

points is still unable to accurately predict 𝑣!. At this time point,
a warming message is immediately sent to ReRe for further
evaluation.

Fig. 3 illustrates the algorithm of Detector 2, which is similar
to that of Detector 1, except when it comes to how 𝐴𝐴𝑅𝐸!## and
detection threshold 𝑡ℎ𝑑) are calculated. Note that Detector 2
calculates 𝐴𝐴𝑅𝐸!## based on Equation 2:

𝐴𝐴𝑅𝐸!## =
1

𝑡 − 𝑏 + 1 ∙ /
0𝑣$ − 𝑣𝑦##40

𝑣$

!

$%&

	 (2)

where 𝑣$##4 is the data value predicted by Detector 2 for time point
𝑦. As shown from lines 3 to 13 of Fig. 3, if a data point 𝑣&'*
(where 𝑥 = 0,1,… , 𝑡 − 𝑏) was considered normal by Detector
2, the corresponding AARE value (i.e., 𝐴𝐴𝑅𝐸&'*##) will be
included to calculate 𝑡ℎ𝑑) . In other words, all ARRE values
associated with the data points that are considered abnormal by
Detector 2 will be excluded from the calculation of 𝑡ℎ𝑑). This
is the key reason why 𝑡ℎ𝑑) is different from 𝑡ℎ𝑑", and why 𝑀)
behaves differently from 𝑀".

Note that Detector 1 and Detector 2 do not need to retrain
their LSTM models for every new point in time. As long as their
current LSTM models are able to make a prediction such that
the corresponding AARE values are under the corresponding
detection thresholds, the LSTM models can be used again. This
feature enables ReRe to remain lightweight and provide
anomaly detection in real-time.

IV. EXPERIMENT RESULTS
In this section, we evaluate the detection performance of

ReRe by designing three experiments where we compare ReRe
with RePAD [16], ADT [4] and ADV [4]. Recall that ADT and
ADV are two open-source statistical-based approaches
introduced by Twitter, while RePAD is a real-time time series
anomaly detection approach. Recall that Luminol [12] is also an
open-source anomaly detection approach. However, Luminol
only produces a score for each data point in the target time series
without being able to indicate which one is anomaly. Due to this
reason, luminol was not chosen for the comparison. All the
experiments were performed on a commodity laptop running
macOS 10.15.1 with 2.6 GHz 6-Core Intel Core i7 and 16GB
DDR4 SDRAM.

TABLE I. THREE REAL-WORLD TIME-SERIES DATASETS

Name Time Period # of data points Time
Interval

CPU-cc2 From 2014-04-10, 00:04
to 2014-04-24, 00:09

4032 5 min

CPU-c53 From 2014-02-14, 14:30
to 2014-02-28, 14:30

4032 5 min

real47 Not provided 1427 1 hour

In the first two experiments, two real-world time series
datasets called ec2-cpu-utilization-825cc2 and rds-cpu-
utilization-cc0c53 were chosen from NAB [2] to evaluate the
four abovementioned approaches. These two datasets are
separately abbreviated as CPU-cc2 and CPU-c53 in this paper.
The last dataset, called real47, was selected from the Yahoo
benchmark datasets [15]. TABLE I lists the details of these
datasets. Note that the interval time between data points in the
first two datasets are 5 minutes, whereas the interval time
between data points in the last dataset is one hour.

TABLE II shows all parameter settings for each of the four
approaches. Note that the Look-Back parameter (i.e., 𝑏) is the
only parameter we need to set for both ReRe and RePAD. Since
both approaches are based on short-term historic data points to

detect anomalies, we followed the setting used in [16] (i.e., 𝑏 =
3) for both ReRe and RePAD in all the experiments. On the
other hand, it is a requirement to set parameter k (which indicates
the maximum number of anomalies to detect) for both ADT and
ADV. We followed the setting mentioned in [4] and set k as
0.02. Furthermore, it is also a requirement to set the period
parameter for ADV. In the first two experiments, we set this
parameter as 1440 according to the setting suggested by [4].
However, in the last experiment, the same setting was
unaccepted by ADV since the value of 1440 is more than the
total length of the real47 dataset. In order to fairly evaluate
ADV, we set this parameter as 300, 500, and 700 to see how
ADV performs under each of these settings. It is worth noting
that ADT was unable to execute the last experiment since ADT
requires the target dataset to be two times longer than real47.

TABLE II. PAPAMETER SETTING OF THE THREE EXPERIMENTS

Approach Experiment 1 Experiment 2 Experiment 3
ReRe 𝑏 = 3 𝑏 = 3 𝑏 = 3

RePAD 𝑏 = 3 𝑏 = 3 𝑏 = 3
ADT 𝑘 = 0.02 𝑘 = 0.02 unexecutable
ADV 𝑘 = 0.02

period=1440
𝑘 = 0.02

period=1440
𝑘 = 0.02

period=300, 500, 700

A. Experiment 1
Fig. 4 illustrates all the data points in the CPU-cc2 dataset

and the detection results of the four approaches on the dataset.
In this dataset, there are two anomalies labeled by human
experts, and both of them are marked as red circles in Figs. 4
and 5.

When ReRe and RePAD were individually employed, they
made some false detections in the beginning. However, this
situation did not happen frequently after ReRe and RePAD
learned the data pattern in the time series. We can see that ReRe
then produced less false detections than RePAD, especially in
the period before the first real anomaly, implying that
employing the two LSTM models with the two long-term self-
adaptive detection thresholds is able to mitigate false positives.

In order to clearly view the detection results of all the
approaches, Fig. 5 depicts a close-up of the detection results.
Apparently, both ReRe and RePAD are the only two
approaches that are able to detect the first anomaly on time (i.e.,
when this anomaly occurs) and to detect the second anomaly
proactively around 5 minutes earlier than the occurrence of the
second anomaly. On the contrary, both ADT and ADV are only
able to detect the second anomaly on time, without being able
to detect the first anomaly at all. Besides, ADT and ADV made
a lot of false positives after the occurrence of the second
anomaly, implying that these two approaches are unable to
adapt to the pattern change in the time series.

TABLE III. THE DETECTION PERFORMANCE OF THE FOUR APPROACHES
ON THE CPU-CC2 DATASET.

Approach Precision Recall F-score
K=0 K=7 K=0 K=7 K=0 K=7

ReRe 0.0513 0.5263 1 1 0.0976 0.6896
RePAD 0.0487 0.5000 1 1 0.0929 0.6667

ADT 0.0125 0.1648 0.5 0.5 0.0244 0.2479
ADV 0.0125 0.1648 0.5 0.5 0.0244 0.2479

TABLE III summaries the precision, recall, and F-score of
all the approaches on the CPU-cc2 dataset. Recall that F-score
is defined as the weighted harmonic mean of the precision and
recall of the test as below:

F-score = 2 × +,-./0/12×,-.455
+,-./0/12',-.455

 (3)

The F-score reaches the best value, meaning perfect
precision and recall, at a value of 1. The worst F-score would
be a value of 0, implying the lowest precision and the lowest
recall. Note that both ReRe and RePAD are capable of
proactive anomaly detection, thus adopting traditional point-
wise metrics to measure them is unsuitable and unfair.
Therefore, we adopt and revise the evaluation method proposed
by [14] to provide appropriate and fair comparison. More
specifically, if any anomaly occurring at time point 𝑡 can be
detected within a time period ranging from time point 𝑡 − 𝐾 to
time point 𝑡 + 𝐾, we say that this anomaly is correctly detected.
From TABLE III, it is clear that when the traditional point-wise
metrics (i.e., Precision at 𝐾 = 0, Recall at 𝐾 = 0, and F-score
at 𝐾 = 0) are used, ReRe performs the best among the four
approaches. However, these metrics cannot reflect its capability
when it comes to proactive detection. When we followed [14]

and set 𝐾 as 7, we can see the precision, recall, and F-score of
each approach all increase. Nevertheless, ReRe still
outperforms the rest of the approaches.

TABLES IV and V list the time performance of both ReRe
and RePAD on detecting anomalies in the CPU-cc2 dataset.
Note that ADT and ADV were not included in this comparison
since both of them are statistical based without using LSTM.
Apparently, ReRe needs to retrain its LSTM models more
frequently than RePAD due to the employment of two LSTMs.
However, if we take the whole dataset into consideration, the
LSTM retraining ratio of ReRe is only 8.84% (=356/4028),
which is very low. Due to this reason, the average time required
by ReRe to detect each data point (i.e., 0.039 sec) is slightly
higher than that required by RePAD (i.e., 0.026 sec). Note that
the detection time for each data point includes both the
corresponding LSTM retraining time (if the retraining is
necessary) and the corresponding detection time. The results
confirm that employing the two LSTMs does not introduce
significant computational complexity and load to the
underlying laptop, indicating that ReRe is lightweight and able
to provide anomaly detection in real-time.

Fig. 4. The detection results of ReRe, RePAD, ADT, and ADV on the CPU-cc2 dataset. Note that this dataset has two anomalies labeled by human experts, marked
as red circles.

Fig. 5. A close-up of the detection results for the first and second anomalies on the CPU-cc2 dataset.

TABLE IV. THE LSTM RETRAINING PERFORMANCE OF RERE AND
REPAD ON THE CPU-CC2 DATASET.

Approach # of data points that requires
LSTM Retraining

LSTM retraining ratio

ReRe 356 8.84% (=356/4028)
RePAD 83 2% (=83/4028)

TABLE V. THE TIME CONSUMPTION OF RERE AND REPAD ON THE CPU-
CC2 DATASET.

Approach Average Detection Time (sec) Standard Deviation (sec)
ReRe 0.039 0.075

RePAD 0.026 0.050

B. Experiment 2
In the second experiment, the CPU-c53 dataset was used to

evaluate the four approaches. This dataset contains two real
anomalies labeled by human experts. Fig. 6 illustrates the whole
dataset, the two anomalies (marked as red circles), and all
detection results of all the four approaches. In order to clearly
view the detection results of all the approaches, Fig. 7 depicts a
close-up of the detection results for the first and the second
anomalies on CPU-c53. Similar to the first experiment, both
ReRe and RePAD generated some false positives before they
learned the data pattern of the time series. This is unavoidable
since ReRe and RePAD learn the time series entirely by
themselves without any domain knowledge or human
intervention. TABLE VI summaries the detection performance
of each approach under two different values of K. When K is set
to 0, both ADT and ADV have the highest value of recall (i.e.,
1) since they are able to detect the two anomalies on time.
However, they produce a high number of false positives (which
can be seen from both Figs. 6 and 7), which considerably impact
their performance in precision and F-score. These false positives
also demonstrate that both ADT and ADV are unable to adapt to
the pattern changes in the time series.

Apparently, ReRe and RePAD perform better than ADT and
ADV in terms of precision and F-score when K=0, which as
mentioned earlier is not a suitable and fair evaluation for ReRe
and RePAD. When K is enlarged to 7, which is a suggested
measure according to [14], we can see that ReRe outperforms
the other three approaches in all the metrics due to its good
performance when it comes to true positives, false positives, and
false negatives. Overall speaking, ReRe offers higher precision,
recall, and F-score than the other three approaches, no matter if
K is set to 0 or 7. The detection performance of ReRe is
satisfactory, given that ReRe learns and adapts to the data
patterns of the time series completely by itself without obtaining
knowledge from the dataset or help from human in advance.

TABLE VI. THE DETECTION PERFORMANCE OF THE FOUR APPROACHES
ON THE CPU-C53 DATASET.

Approach Precision Recall F-score
K=0 K=7 K=0 K=7 K=0 K=7

ReRe 0.045 0.533 0.5 1 0.0825 0.695
RePAD 0.037 0.457 0.5 1 0.0689 0.627

ADT 0.025 0.174 1 1 0.0487 0.296
ADV 0.025 0.174 1 1 0.0487 0.296

Table VII and VIII list the time performance of ReRe and
RePAD on detecting anomalies in the CPU-c53 dataset. When
ReRe is employed, it requires to retrain its LSTM models at 111
data points, which is approximately 1.88 (=111/59) times of that
required by RePAD. Nevertheless, the LSTM retraining ratio of
ReRe is very low since it is only 2.76% (=111/4028), implying
that the overhead introduced by ReRe is insignificant. This also
explains why the average detection time taken by ReRe is just a
little longer than the one taken by RePAD. In other words, the
results confirm that ReRe is a cost-effective and time-efficient
anomaly detection approach.

Fig. 6. The detection results of the four approaches on the CPU-c53 dataset. Note that this dataset has two anomalies labeled by human experts, marked as red
circles.

Fig. 7. A close-up of the detection results for the first and second anomalies on the CPU-c53 dataset.

TABLE VII. THE LSTM RETRAINING PERFORMANCE OF RERE AND
REPAD ON THE CPU-C53 DATASET.

Approach # of data points that requires
LSTM retraining

LSTM retraining ratio

ReRe 111 2.76% (=111/4028)
RePAD 59 1.46% (=59/4028)

TABLE VIII. THE TIME CONSUMPTION OF RERE AND REPAD ON THE CPU-
C53 DATASET

Approach Average Detection Time (sec) Standard Deviation (sec)
ReRe 0.018 0.032

RePAD 0.015 0.024

C. Experiment 3
In the last experiment, we chose the real-world dataset real47

from the Yahoo benchmark datasets [15] to evaluate the four
approaches since the anomalous data points in this dataset are
considered particularly challenging to detect [11]. As illustrated
in Fig. 8, this dataset contains 10 anomalous data points marked
as red circles. Although these anomalous data points have
normal values between 0.2 and 0.8, their shapes and patterns are
unusual, which is the main reason why they are considered as
anomalies by human experts.

As mentioned earlier, ADT is unable to execute on this
dataset since ADT demands at least twice the amount of data
points compared to what is present in real47. Hence, we are
unable to measure the performance of ADT in this experiment.
In addition, due to the short length of the real47 dataset, setting
parameter period to be 1440 does not work for ADV. Hence, we
evaluate the performance of ADV under three different settings
(i.e., period=300, period=500, and period=700) for fair
comparison.

Fig. 9 depicts a close-up of the detection results for the 10
anomalies in the real47 dataset. When ReRe and RePAD were

separately employed, they made less false positives than ADV,
implying that both ReRe and RePAD are able to learn the data
distribution of the dataset and promptly adapt to pattern changes.
According to TABLE IX, ReRe and RePAD provide the same
superior detection performance in all the metrics when K=3
(which is a suggested measure according to [14] for any hourly-
interval dataset). The result confirms that the short-term Look-
Back and Predict-Forward strategy makes ReRe and RePAD
able to detect these tough anomalies.

On the contrary, when ADV with period=300 was tested, it
made neither true positives nor false positives since it considered
all data points as normal. For this reason, the corresponding
precision and recall are all zero, which makes it impossible to
calculate the F-score based on Equation 1.

When ADV with period=500 was employed, the situation
did not improve since ADV made several false positives for the
last anomaly without being able to detect the other anomalies.
Setting period as 700 for ADV seems a better choice since the
corresponding precision, recall, and F-score increase.
Nevertheless, ADV is still unable to outperform ReRe and
RePAD.

TABLE IX. THE DETECTION PERFORMANCE OF RERE, REPAD, AND ADV
ON THE REAL47 DATASET.

Approach Precision Recall F-score
K=0 K=3 K=0 K=3 K=0 K=3

ReRe 0.125 0.7 0.1 1 0.111 0.824
RePAD 0.125 0.7 0.1 1 0.111 0.824
ADV

(period =300)
0 0 0 0 n/a n/a

ADV
(period =500)

0 0 0 0 n/a n/a

ADV
(period =700)

0 0.308 0 0.036 n/a 0.064

Fig. 8. The detection results of ReRe, RePAD, and ADV on the real47 dataset. Note that this dataset contains ten anomalies labeled by human experts, and they
are marked as red circles.

Fig. 9. A close-up of the detection results for ten anomalies on the real47 dataset.

TABLE X. THE LSTM RETRAINING PERFORMANCE OF RERE AND
REPAD ON THE REAL47 DATASET.

Approach # of data points that requires
LSTM retraining

LSTM retraining ratio

ReRe 31 2.18% (=31/1422)
RePAD 31 2.18% (=31/1422)

TABLE XI. THE TIME CONSUMPTION OF RERE AND REPAD ON THE
REAL47 DATASET.

Approach Average Detection Time (sec) Standard Deviation (sec)

ReRe 0.016 0.029
RePAD 0.015 0.028

TABLE X and XI summarize the time performance of ReRe
and RePAD on detecting anomalies in the real47 dataset. Both
ReRe and RePAD require to retrain their LSTM models at 31
data points, and the corresponding LSTM retraining ratio is low,
only 2.8% (=31/1422), demonstrating the cost effectiveness of

both ReRe and RePAD on the dataset. Due to the same reason,
the average detection time required by these two approaches are
also similar to each other, with similar standard deviations. The
results show that even though ReRe employs one more LSTM
with one more detection threshold, it is still very lightweight and
able to conduct anomaly detection in real-time.

V. CONCLUSION AND FUTURE WORK
In this paper, we have introduced ReRe for detecting

anomalies in time series in a real-time manner. ReRe is able to
work on any time series without needing to know the
corresponding data distribution/patterns or data labels. In fact,
ReRe requires no training data since it does not need to go
through an off-line training process. This ready-to-go feature
makes ReRe a practical solution in many real-world scenarios
since it significantly reduces human effort.

After a very short probation period, ReRe starts its detection
function without requiring a person to manually set detection

thresholds. ReRe dynamically adjusts its two long-term
detection thresholds over time and retrains its two LSTM models
when necessary. These features enable ReRe to adapt to pattern
changes in the target time series and detect anomalies in a time-
efficient and real-time manner. Experiments based on real-world
time series data demonstrate that ReRe provides satisfactory
detection performance as compared with the other three state-
of-the-art approaches. In addition, the lightweightness of ReRe
makes it a cost-effective solution to be deployed on commodity
machines.

As future work, we plan to further improve the detection
performance of ReRe, especially in terms of false positives, by
investigating hybrid solutions in a lightweight manner. In
addition, we would like to extend ReRe for large-scale time
series from the eX3 HPC cluster [17] by referring to [18][19] and
designing it in a parallel and distributed way.

REFERENCES
[1] J. Ma and S. Perkins, “Time-series novelty detection using one-class

support vector machines,” In Proceedings of the International Joint
Conference on Neural Networks (IEEE), vol. 3, pp. 1741–1745, July
2003.

[2] A. Lavin and S. Ahmad, “Evaluating real-time anomaly detection
algorithms – the Numenta Anomaly Benchmark,” In 14th International
Conference on Machine Learning and Applications (IEEE ICMLA’15),
pp. 38–44, December 2015.

[3] Numenta, Inc. (2015) “NAB: Numenta Anomaly Benchmark [Online
code repository],” Redwood City, CA: Numenta, Inc. Available:
https://github.com/numenta/NAB

[4] Twitter/AnomalyDetection [Online code repository], Available:
https://github.com/twitter/AnomalyDetection

[5] J. Hochenbaum, O.S. Vallis, and A. Kejariwal, “Automatic anomaly
detection in the cloud via statistical learning,” arXiv preprint
arXiv:1704.07706, 2017.

[6] T.J. Lee, J. Gottschlich, N. Tatbul, E. Metcalf, S. Zdonik, “Greenhouse:
A zero-positive machine learning system for time-series anomaly
detection,” arXiv preprint arXiv:1801.03168, 2018.

[7] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[8] What is early stopping,
https://deeplearning4j.org/docs/latest/deeplearning4j-nn-early-stopping
[accessed Jan./31/2020]

[9] N. Laptev, S. Amizadeh, and I. Flint, (2015, August) “Generic and
scalable framework for automated time-series anomaly detection,”
In Proceedings of the 21th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (pp. 1939-1947). ACM.

[10] A. Siffer, P. -A. Fouque, A. Termier, and C. Largouet, (2017, August).
“Anomaly detection in streams with extreme value theory,”
In Proceedings of the 23rd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (pp. 1067-1075). ACM.

[11] C. Huang, et al. “Time series anomaly detection for trustworthy services
in cloud computing systems,” IEEE Transactions on Big Data (2017).

[12] linkedin/luminol [Online code repository], Available:
https://github.com/linkedin/luminol.

[13] H. Xu, et al. “Unsupervised anomaly detection via variational auto-
encoder for seasonal KPIs in web applications,” In Proceedings of the
2018 World Wide Web Conference, pp. 187–196, 2018.

[14] H. Ren, et al. “Time-Series Anomaly Detection Service at
Microsoft,” In Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 3009–3017,
2019.

[15] Yahoo, S5 - A Labeled Anomaly Detection Dataset, version 1.0,
http://webscope.sandbox.yahoo.com/catalog.php?datatype=s&did=70,
2015.

[16] M.-C. Lee, J.-C. Lin, and E. G. Gran, “RePAD: Real-time Proactive
Anomaly Detection for Time Series,” In Proceedings of the 34th
International Conference on Advanced Information Networking and
Applications (AINA 2020), Springer. https://arxiv.org/abs/2001.08922

[17] Simula Research Laboratory, eX3 research cluster, Available:
https://www.ex3.simula.no

[18] J.-C. Lin and M.-C. Lee, “Performance evaluation of job schedulers under
Hadoop YARN,” Concurrency and Computation: Practice and
Experience (CCPE), vol. 28, no. 9, pp. 2711–2728, 2016.

[19] M.-C. Lee, J.-C. Lin, and R. Yahyapour, “Hybrid job-driven scheduling
for virtual MapReduce clusters,” IEEE Transactions on Parallel and
Distributed Systems (TPDS), vol. 27, no. 6, pp. 1687–1699, 2016.

