Vis enkel innførsel

dc.contributor.authorSauermoser, Marco
dc.contributor.authorKjelstrup, Signe
dc.contributor.authorKizilova, Nataliya
dc.contributor.authorPollet, Bruno
dc.contributor.authorFlekkøy, Eirik Grude
dc.date.accessioned2021-03-01T09:20:18Z
dc.date.available2021-03-01T09:20:18Z
dc.date.created2020-03-19T15:08:29Z
dc.date.issued2020
dc.identifier.citationPhysical Chemistry, Chemical Physics - PCCP. 2020, 22 6993-7003.en_US
dc.identifier.issn1463-9076
dc.identifier.urihttps://hdl.handle.net/11250/2730829
dc.description.abstractCommon for tree-shaped, space-filling flow-field plates in polymer electrolyte fuel cells is their ability to distribute reactants uniformly across the membrane area, thereby avoiding excess concentration polarization or entropy production at the electrodes. Such a flow field, as predicted by Murray's law for circular tubes, was recently shown experimentally to give a better polarization curve than serpentine or parallel flow fields. In this theoretical work, we document that a tree-shaped flow-field, composed of rectangular channels with T-shaped junctions, has a smaller entropy production than the one based on Murray's law. The width w0 of the inlet channel and the width scaling parameter, a, of the tree-shaped flow-field channels were varied, and the resulting Peclet number at the channel outlets was computed. We show, using 3D hydrodynamic calculations as a reference, that pressure drops and channel flows can be accounted for within a few percents by a quasi-1D model, for most of the investigated geometries. Overall, the model gives lower energy dissipation than Murray's law. The results provide new tools and open up new possibilities for flow-field designs characterized by uniform fuel delivery in fuel cells and other catalytic systems.en_US
dc.language.isoengen_US
dc.publisherRoyal Society of Chemistryen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleSeeking minimum entropy production for a tree-like flow-field in a fuel cellen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.pagenumber6993-7003en_US
dc.source.volume22en_US
dc.source.journalPhysical Chemistry, Chemical Physics - PCCPen_US
dc.identifier.doi10.1039/C9CP05394H
dc.identifier.cristin1802478
dc.relation.projectNorges forskningsråd: 262644en_US
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse 4.0 Internasjonal