• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Simultaneous Perturbation Stochastic Approximation-based Consensus for Tracking under Unknown-but-Bounded Disturbances

Granichin, Oleg; Erofeeva, Victoria; Ivanskiy, Yury; Jiang, Yuming
Peer reviewed, Journal article
Accepted version
Thumbnail
Åpne
Granichin (841.7Kb)
Permanent lenke
https://hdl.handle.net/11250/2727618
Utgivelsesdato
2020
Metadata
Vis full innførsel
Samlinger
  • Institutt for informasjonssikkerhet og kommunikasjonsteknologi [1606]
  • Publikasjoner fra CRIStin - NTNU [21000]
Originalversjon
IEEE Transactions on Automatic Control. 2020, .   10.1109/TAC.2020.3024169
Sammendrag
We consider a setup where a distributed set of sensors working cooperatively can estimate an unknown signal of interest, whereas any individual sensor cannot fulfil the task due to lack of necessary information diversity. This paper deals with these kinds of estimation and tracking problems and focuses on a class of simultaneous perturbation stochastic approximation (SPSA)-based consensus algorithms for the cases when the corrupted observations of sensors are transmitted between sensors with communication noise and the communication protocol has to satisfy a prespecified cost constraints on the network topology. Sufficient conditions are introduced to guarantee the stability of estimates obtained in this way, without resorting to commonly used but stringent conventional statistical assumptions about the observation noise such as randomness, independence, and zero mean. We derive an upper bound of the mean square error of the estimates in the problem of unknown time-varying parameters tracking under unknown but bounded observation errors and noisy communication channels. The result is illustrated by a practical application to the multi-sensor multi-target tracking problem.
Utgiver
Institute of Electrical and Electronics Engineers (IEEE)
Tidsskrift
IEEE Transactions on Automatic Control

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit