Multi-agent formation tracking for autonomous surface vehicles
Peer reviewed, Journal article
Accepted version

View/ Open
Date
2020Metadata
Show full item recordCollections
Original version
10.1109/TCST.2020.3035476Abstract
In this article, the problem of collaborative tracking of an underwater target using autonomous surface vehicles (ASVs) is studied. Distance-based formation control with a collision-avoidance potential function is employed as a solution. A formation control protocol is devised and applied to the formation tracking problem. With the protocol, the vehicles form a desired formation around a moving target in order to continuously estimate its position, while the centroid of the formation tracks the target. Almost global stability is proved for the case with three tracking agents. A fully operational platform with four ASVs was built to implement the derived algorithms. One of the vehicles was used to simulate a target and the rest to form a triangular formation around it. Power usage of a naval vessel is highly affected by water resistance forces which increases significantly with the velocity. This was accounted for by adding an additional term to the formation tracking protocol, thereby increasing the overall system endurance. Experimental results are presented.