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Multi-agent formation tracking for autonomous
surface vehicles

Rasmus Ringbäck, Jieqiang Wei*, Elias Strandell Erstorp, Jakob Kuttenkeuler, Tor Arne Johansen and Karl Henrik
Johansson

Abstract—In this paper, the problem of collaborative tracking
of an underwater target using autonomous surface vehicles is
studied. As a solution, we consider distance-based formation
control with a collision-avoidance potential function. The devised
formation control protocol is applied to the formation tracking
problem, where vehicles form a desired formation around a
moving target and estimate its position. More precisely, the
centroid of the formation tracks the target. Almost global stability
is proved for the case with three tracking agents.

A fully operational platform with four autonomous surface
vehicles was built to implement the derived algorithms, where
one of the vehicles was used to simulate a target and the rest
to try to form a triangle formation around the target. Power
usage of a naval vessel is highly affected by resistance forces
which increases significantly with velocity. To account for this
and increase the overall system endurance, the derived formation
tracking protocol was furthermore modified with an additional
term. Experimental results are presented.

Keywords—Multi-agent systems; Formation control; Tracking;
Autonomous Surface Vehicles

I. INTRODUCTION

Background and motivation: Monitoring of marine wild life
is important for both environmental and industrial concerns.
Knowing movement patterns and discovering breeding grounds
and spawns has great value for the research community. GPS
tracking and other radio-based techniques have successfully
been used to monitor the movement of larger sea creatures
such as whales and dolphins. However, these methods have
the drawback of using both large transmitting devices and
the inherent unreliability of communicating information under
water. Usually, positioning of the animals can only be done
at certain times when they surface. For aquatic animals that
resides permanently underwater, such as fish or sharks, this is
not a viable strategy.
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Underwater surveillance and positioning is a challenging
research area because of the high electromagnetic absorption
of water, especially seawater with its high salinity. The solution
has for the most part been to use acoustic measurement
techniques, which can be either passive or active sonar. The
drawback is the limited range, namely only the largest of
animals such as whales can be heard from more than a few
miles away and small acoustic tags generally have low power
output. Hence, for accurate positioning the use of closer range
trilateration is necessary.

With the use of robotics, new possible ways to forward
research in this area can be developed [1][2]. There is a
large potential use of Autonomous Surface Vehicles (ASVs)
or Autonomous Underwater Vehicles (AUVs) to both observe
and follow monitored animals in an autonomous manner. ASVs
can estimate the location of an underwater target transmitting
sound at regular intervals with the use of distance-of-arrival,
directional finding or triangulation techniques, for instance
studied in [3][4]. With a group of vehicles, as long as the
target does not move much faster than the ASVs or dives
too deep for the signal to reach the surface, the group would
be able to continuously acquire new estimates by keeping
themselves near the estimated locations. The challenge consists
of providing a reliable control scheme for the vehicles, together
with a robust communication network and a steady stream of
localization estimates.

In this paper we will present a system of ASVs which can
be used for monitoring of a target fitted with a small acoustic
transmitter. One key aspect of ASVs is that the power usage
is at least proportional to the square of the speed, which has
to be taken into consideration to ensure sustainability of the
system.

Related literature: The design methodology in the current
paper is closely related to multi-agent formation control which
has been extensively studied in the last two decades [5][6].
In [7] the authors proposed a control strategy to make three
agents converge to a designated triangular formation by using
the distances between their neighbors and themselves. Con-
vergence was shown to the desired distances except for initial
conditions where all the agents are collinear. In [8] the same
problem was addressed further, and in [9] the authors proved
that under a gradient-decent based control law, the system
has a rank-preserving property. Rank-preserving means that
when a formation has been initialized in a particular dimen-
sion, it cannot change to another dimension. For instance,
a two dimensional formation becoming three dimensional or
one dimensional. We shall refer this type of convergence as
almost global convergence. [8] and [9] deal with formation
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control without collision avoidance. Convergence properties
of distance based formations, with collision avoidance, were
studied in [10], [11] without proof for the almost global con-
vergence. Aforementioned works focus on holonomic agents.
For formation control with non-holonomic agents, we refer to
[12], [13], [14], [15] and references within.

An application of multi-agent formation control is to esti-
mate and track the position of an unknown target. When it
comes to tracking and surveillance, having multiple vehicles
taking measurements is beneficial. Accurate localization re-
quires more than one measurement with sensors spread out
to give as much coverage as possible which reduces the
sensitivity and increases the robustness of the system. With
several agents, standard localization methods can be used,
e.g., triangulation or trilateration. Using known information
of a target, a target-capturing algorithm was proposed in [16]
which guarantees that the centroid of the formation tracks the
target and the agents circumnavigate around the target for all
time. The idea of circumnavigation has been further used in
other papers for estimation of a target position. In [17], a
method for localization was developed using the movement
of the agent and continuous distance measurements of the
target. A similar method was later developed in [18] and
[19] for multi-agent systems. The essence of these methods
is to guarantee a persistent excitation condition, crucial for
adaptive identification schemes, by using circumnavigation
of the agent around the estimated target. However, this is a
drawback when considering surface vehicles since continuous
circumnavigation comes with significant energy losses.

Practical implementations of multi-agent systems for local-
ization and tracking has been published using various methods.
For instance, [20] used a scheme for distributed localization
with bearing measurements using agents with wheel encoders
and omnidirectional cameras. [21] developed a system using
moving horizon estimation and non-linear model predictive
control for trajectory tracking and compared it to the more
standard extended Kalman filter with promising results.

Contribution: Firstly, in this paper we present a reliable au-
tonomous tracking system for underwater targets using ASVs
with collision avoidance and the energy usage of the agents
taken into consideration. The system and control protocol is
implemented in a complete experimental system which shows
the practical capability of the method.

Secondly, the convergence property of the proposed control
protocol is proven analytically. If considering the case without
the target in the formation, the proposed protocol is a distance-
based formation control protocol using a collision-avoidance
potential function [10], [11]. The desired formation is achieved
asymptotically for almost all initial conditions, i.e, almost
global stability. Compared to [9] and [22], which depends
on the analysis of the Hessian matrix of a potential function
without collision avoidance, our method can be extended to
arbitrary potential functions.

The stability of distance-based formation control protocols
with more than three agents is still open [23]. However, we
extend the three agent control protocol to the tracking problem
and prove that the same stability properties holds.

Organization: In Section II some useful definitions are re-

viewed. The objective of this paper is formulated in Section III.
The formation tracking protocol is proposed and is proven to
be almost globally stable in Section IV, using the proof of
almost global stability of a distance-based formation control
with three agents presented in Appendix A. The experimental
design for the system of ASVs and the results from experi-
ments are presented in Section V and VI, respectively. Then
the paper is concluded in Section VII.

II. PRELIMINARIES

The notations used in this paper are fairly standard. With
R−,R+,R>0 and R60 we denote the sets of negative, positive,
non-negative, non-positive real numbers, respectively. ‖ · ‖
denotes the `2-norm. The operator col defines the stacked
column vector. For a stacked vector x = [x>1 , x

>
2 , . . . , x

>
r ]>

with x>i ∈ Rl, i = 1, . . . , r, we define the block diagonal
matrix D(x) := diag{xi}i=1,...,r ∈ Rrl×r.

The notions about graph theory are consistent with [24].
An undirected graph G = (I, E) consists of a finite set of
nodes I = {1, 2, . . . , n} and a set of edges E ∈ I × I of
unordered pairs of I. To each edge (i, j) ∈ E , we associate
a weight wij > 0. We denote the set of neighbors of node
i as Ni = {j ∈ I | wij > 0}. If the edges are ordered
pairs of I, the graph G is called a directed graph, or digraph
for short. An edge of a digraph G is denoted by (i, j) (with
i 6= j) representing the tail vertex i and the head vertex j of
this edge. A digraph with unit weights is completely specified
by its incidence matrix B ∈ Rn×m, where |E| = m, with Bij
equal to −1 if the jth edge is towards vertex i, and equal to 1 if
the jth edge is originating from vertex i, and 0 otherwise. The
incidence matrix for undirected graphs is defined by adding
arbitrary orientations to the edges of the graph.

Definition II.1 ([25]). We will say that the origin x = 0 is an
almost globally stable fixed point for the system ẋ(t) = f(x)
if f(0) = 0 and almost all trajectories converge to it, i.e. if
we note by f t(x0) the trajectory at time t that starts at x0,
then the set

{x0 ∈ R | lim
x→+∞

f t(x0) 6= 0}

has zero Lebesgue measure.

III. PROBLEM FORMULATION

In this paper, we consider a problem of formation tracking
applied to ASVs. A set of agents are designed to create a
specified formation, while at the same time aiming to keep a
moving target at the center of the formation. More precisely,
we consider the system with n agents with xi(t) ∈ R2, i ∈
I := {1, . . . , n} being the position of the agents, and xT (t)
being the projected position of the underwater target on the
surface. Any realizable formation is possible to use, but the
final control aim is to let xi form a regular polygon with
xT aligning with the centroid xc of this polygon. The reason
for this aim is that with the target at center of the polygon
formation we have better performance of source localization,
i.e, the estimation of the target position [26]. Here we assume
that the position of the target is known to the agents, a
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Fig. 1. Illustration of how the three agent formation tracks the target moving
along a trajectory. The agents xi, i = 1, 2, 3, with the centroid xc, are given
over three time steps together with the target estimations xT in red. By the
agents forming the desired formation Φ, and where the centroid attempts
to align with the target estimation, the system is able to acquire sufficient
localization ability to keep tracking the target.

premise based on the inclusion and accuracy of the localization
algorithm.

The dynamics of the tracking agents are given as

ẋi = ui, i ∈ I, (1)

where ui ∈ R2 is the control input for the ith agent. Given
an undirected graph G := {I, E}, the desired formation of the
agents can be defined accordingly as

Φ , {x ∈ R2·n | ‖xi − xj‖ = dij , ∀(i, j) ∈ E}, (2)

where dijs are the desired realizable distances between the
agents. We furthermore assume that the formation Φ is rigid.
An illustration of the formation tracking problem can be seen
in Figure 1. When the target is absent, the formation tracking
problem degenerate to ordinary formation control, i.e., design
the input ui such that the positions of the agents achieve the
desired formation Φ.

The control objective is the design and implementation of
a distance-based formation tracking protocol, using collision-
avoidance potential functions. The objective is further ex-
panded more explicitly to ASVs, incorporating the above
tracking protocol with the additional aim of increasing system
endurance. The power to speed ratio on water is at least
quadratic, so for ASV agents with low energy storage, lower
speeds are highly desirable. Operational loss of one or more
agents would cause poor accuracy for further localization of
the target, making energy management an important consider-
ation.

IV. FORMATION TRACKING WITH TRILATERATION

In this section, we consider the formation tracking problem
and propose our control protocol as well as the adaption to the
experimental system.

Firstly, we review an existing formation control algorithm
commonly used in the literature, for example in [8][9].

ẋi = −
∑
j∈Ni

(‖xi − xj‖2 − d2ij)(xi − xj), i ∈ I, (3)

with xi ∈ R2, is the steepest descent gradient flow of the
potential function

Vcol(x) =
1

4

∑
(i,j)∈E

(‖xi − xj‖2 − d2ij)2. (4)

However, this protocol can not guarantee collision avoidance.
In this paper we focus on the following collision-avoiding

potential function [10]

V (x) =
∑

(i,j)∈E

γ(βij(x)) (5)

where γ(βij) =
(βij−d2ij)

2

βij
and βij = ‖xi − xj‖2.

We define z = (B> ⊗ I2)x,D(z) = diag(z1, z2, . . . , zm)
and D(x) = col(‖xi − xj‖2, (i, j) ∈ E) where B is the
incidence matrix of the graph representing the rigid formation.
Denote the rigidity matrix as

R(z) =
1

2

∂D
∂x

(6)

=D(z)>(B> ⊗ I2). (7)

We further define e = [ρ1, . . . , ρm]>, where ρk = ∂γ
∂βij

=
β2
ij−d

4
ij

β2
ij

, for k = (i, j). Then the dynamic of the agents, which
is the steepest descent gradient flow of the potential function
(5), can be written in a compact form as follows [9]

ẋ =−R>(z)e (8)
=− (B ⊗ I2)D(z)e. (9)

Furthermore,

ż =(B> ⊗ I2)ẋ (10)
=− ((B>B)⊗ I2)D(z)e. (11)

It can be readily checked that the centroid of the agents is
invariant.

Remark 1. Notice that if the relative distance βij becomes
zero, then V (x) is equal to infinity. Furthermore, for the system
controlled by (8) we have V̇ (x) 6 0. Hence, collision is
avoided for all times.

The local stability of (8) was proved in [10]. However,
almost global stability, even for three agents, can not be found
in the literature. In this paper we present a proof for the case
of three agents, which can be found in Appendix A.

Next, we propose a protocol based on the collision-avoiding
potential function (5) and the dynamic (8) for the formation
tracking problem, i.e. surrounding the target.

Consider the dynamics of the agents as given by

ẋi = vT − (xc − xT )−
∑
j∈Ni

ρk(xi − xj), i ∈ I (12)

where xc = 1
n

∑
i∈I xi is the centroid of the agents, and

xT ∈ R2 and vT ∈ R2 are the position and velocity of



4

the target respectively, which are assumed to be known. The
stacked version of the system is written as

ẋ = 1⊗ (vT − (xc − xT ))−∇V (x). (13)

Determining the number of incorrect formations 1 for multi-
agent systems with more than three agents is still an open
problem in the literature [23]. The system (12) can be seen as
an extension of the three agent problem with tracking terms.
Based on the proof in Appendix A, we shall prove the almost
global convergence of this system with a triangular formation.

Theorem IV.1. Consider the system (12) with three agents
and assume that the desired triangle formation is realizable.
If one of the following holds

(i) the initialization of the agents is generic,
(ii) the initialization of the agents is collinear, i.e., there exists

a line η such that xi(0) ∈ η ⊂ R2, i = 1, 2, 3, and there
exists a t > 0 such that xT (t) /∈ η,

then the desired formation is achieved with the centroid
tracking the target asymptotically.

Proof: The proof can be divided into two steps.
In the first step, we prove that the centroid is converging to

the target asymptotically. In fact, the dynamic of the centroid
is given as

ẋc = vT − (xc − xT ). (14)

Then the convergence is clear by considering the Lyapunov
function V (xc) = 1

2‖xc − xT ‖2 where the time derivative
satisfies that V̇ = −2V .

In the second step, consider the coordination error denoted
as x̃i = xi − xT whose dynamic is given as

˙̃xi = −(x̃c)−
∑
j∈Ni

ρk(x̃i − x̃j), i ∈ I (15)

where x̃c = xc − xT . Notice that if there exists a line η such
that xi(0) ∈ η ⊂ R2, i = 1, 2, 3 and xT (t) ∈ η,∀t > 0, then
this line η is invariant for the system (12). Then the condition
(i) and (ii) guarantee that there exists a t > 0 such that the
vectors x̃i, i = 1, 2, 3 are not collinear. In this case, we prove
that x̃i, i = 1, 2, 3 can not converge to a line.

By the convergence of xc − xT , we have x̃c(t) → 0 as
t → ∞. Then the equilibrium set of the error dynamic is
given as

H̃ = {x̃ ∈ R6 | R>(z̃)e = 0}, (16)

where z̃ = (B> ⊗ I2)x̃, and the sets of correct and incorrect
equilibria are respectively denoted as

H̃c ={x̃ ∈ R6 | R>(z̃)e = 0, e = 0} (17)

H̃i ={x̃ ∈ R6 | R>(z̃)e = 0, e 6= 0}. (18)

Furthermore, by the same argument as in the proof of Theorem
A.2 from the appendix, i.e. using W̃ = ‖x̃1 − x̃2‖ + ‖x̃2 −
x̃3‖ − ‖x̃3 − x̃1‖, the convergence to H̃c can be proved if

1For the definition of incorrect formations, refer to [23]

xT

x1 x2

x3

Fig. 2. The graph structure used for three agents with target.

there exists a t > 0 such that the vectors x̃i, i = 1, 2, 3 are not
collinear.

Remark 2. From the proof Theorem IV.1, we note that the
dynamic of the error (15) is gradient decent of the following
potential function

Vt := V1 + V (19)

where V1 = 1
2n‖

∑
i∈I x̃i‖22. More specifically, in this section,

we set n = 3. The graph structure can be seen in Figure 2.

A. Adaptation to the experimental system

In principle, the control protocol (12) can be applied to
the ASVs directly. However, the power usage for an ASV
is proportional to the resistance force acting on the vessel.
The simplest derivation of the resistance from Bernoulli’s
principle [27] gives that the resistance can be described by
R = 1

2ρCAv
2, where ρ in this case denotes fluid density,

C is the coefficient of drag, A is the surface area, and v is
the velocity. The energy consumption then increases with the
square of the velocity, which thus is critical to decrease. In
order to prolong the potential operational time, we shall present
an adaptation of the above control protocol (12), which will
be used by the ASVs in the experiment.

In the experiment, the velocity of the target is not available
directly, instead the position of the target is measured, using
trilateration, every τ time steps. In other words, for any t >
t0, [xT (t0), xT (t0 + τ), . . . , xT (t0 + Nτ)] is available where
N =

⌊
t−t0
τ

⌋
. To abbreviate notations, we denote the target

xT,N := xT (t0+Nτ) and the position of the agents as xi,N :=
xi(t0 + Nτ). From the time t0 + Nτ to t0 + (N + 1)τ , the
agents are designed to achieve the desired formation. More
precisely, the dynamic of each agent is given as

ẋi(t) =− (xc(t)− xT,N )−
∑
j∈Ni

ρk(xi(t)− xj(t))

− αi(xi(t)− xi,N ), i ∈ I,
t ∈ [t0 +Nτ, t0 + (N + 1)τ ] (20)

where αi is a positive parameter.
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Remark 3. By denoting the state error x̃i = xi − xT,N and
x̃i,N = xi,N − xT,N , the error dynamic is given as

˙̃xi = −x̃c −
∑
j∈Ni

ρk(x̃i(t)− x̃j(t))− αi(x̃i − x̃i,N )

where x̃c = 1
n

∑
i∈I x̃i. The above dynamic (20) is the

gradient decent algorithm of the following potential function

Vtot :=
1

2n

∑
i∈I
‖x̃i‖22 + V (x̃) +

∑
i∈I

αi
2
‖x̃i − x̃i,N‖22

where V is given as in (5). It can be seen that this potential
function Vtot takes the distance between the centroid of the
formation and xT,N , collision avoidance, and the distance
between xi and xi,N into consideration.

The last term of the potential function Vtot punishes the
distance between the current agent position and the position
of the agent at the next sampling time, i.e. xi,N . By introducing
this term, the cost of movement for individual agents can be
managed. Increasing αi makes the agent stay closer to its
previous position xi,N and thus lower speeds and less energy
to be used. With the same value of αi for all agents, the
system would be affected uniformly. But with individually
different values, certain agents would move slower than others.
However, any increase of αi will potentially cause worse
tracking ability of the whole system. In the current system,
the values of αi, i = 1, 2, 3 is set by the operator and not
dependent on any other system variable.

The separation of the desired agent states and current
positions, through which we can include the term αi(x̃i−x̃i,N )
in (20), was inspired by [13]. For the system (20), a potential
proof of the almost global stability would be significantly more
difficult than the case of (12). In the following subsections,
we shall present a physical system using ASVs, where the
trajectory generated by (20) will be used as a control reference.
The used formation was in this case an equilateral triangle, i.e.
di,j = d, ∀i, j.

V. ASV PLATFORM SETUP

Based on the devised control law, an algorithm was im-
plemented in a system of small autonomous surface vehicles,
ASVs. Four vehicles were employed for a series of experi-
ments. Three of these vehicles took the role of the controllable
agents xi, i = 1, 2, 3, aiming to create the triangular formation
around the target. The fourth agent was manually controlled
and carried an acoustic transmitter attached to a rigid pole
below the water surface, thus emulating the behavior of a
fish and acting as the target xT . The task of the system
was to continuously track the target using receivers on the
other vehicles. The position of the target was estimated using
trilateration every 8 seconds, i.e., we set τ = 8.

A. Ducklings
At KTH Maritime robotics laboratory four ASVs were

constructed. They are small catamarans driven by two external
thrusters at the back of the vehicles. Due to their small size,

Fig. 3. The ASVs used in the experiments. The left and right pictures show the
front and back of the "ducklings" where the acoustic receivers and thrusters,
RFD868 and Wifi antennas can been seen, respectively.

they are capable of agile steering and high initial acceleration.
In Figure 3 an image of the "ducklings", a name which will
be used when referring to the ASVs, can be seen. In Table I
specifications have been listed.

TABLE I. TECHNICAL SPECIFICATIONS OF THE DUCKLINGS.

Parameter Value
Length 1120 [mm]
Breadth 720 [mm]
Height 240 [mm]
Weight 15 [kg]
Material Polystyrol
Thrusters BLUE ROBOTICS, T200
Operational speed 1 [m/s]
Maximum speed 1.5 [m/s]
Battery type 6S LiPo
Battery capacity 16 or 32 [Ah]
On-board PC Raspberry Pi 3 Model B (Raspbian OS)
Microcontroller Custom Arduino Due (ARM Coretex M3)
GPS antenna Dielectric GPS/GLONASS
Radio Ubiquiti Bullet M5Ti
Radio antenna 5 GHz, 8 dBi
Wireless protocol AirMax

On land two PC’s were used, one for running the forma-
tion controller and one for controlling the target ASV. The
PC’s were connected to the network of vehicles through a
base station via a switch. Low-level control of a vehicle
were handled by a microcontroller unit (MCU). The MCU
handles navigation and path-following through GPS and an
inertial measurement unit (IMU), and reacts to a limited set
of commands. To establish a network of vehicles, they were
each equipped with an embedded Linux computer and wireless
modems. This setup is required to make use of the LSTS
Toolchain. A schematic of the system can be seen in 4.

1) The LSTS Toolchain: The open source LSTS Toolchain
[28] for control of systems of autonomous vehicles were used
as the software platform for the experiments. The toolchain
provides three main components: Neptus, a user interface for
situation awareness, mission control and logging. DUNE, an
on-board software running mission-execution, systems moni-
toring, sensor data collection and logging in parallel processing
threads called Tasks. And the Inter-module Communication
Protocol (IMC), a message-based protocol for sharing infor-
mation between processes and systems in a publish-subscribe
pattern.

The toolchain provided a well defined framework for com-
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Fig. 4. Overview of the system during operation. Dashed lines denote
subsystems and processes used only in agents. The dot-dash line denote the
trilateration process running in the target.

munication and execution between different modules. Different
parts of the software could be developed in parallel without
the need of extensive collaboration between the different
geographically spread out participants in the project. The
integration process thus became simple when the different
modules were to be combined for the full experiment.

2) DUNE: The ducklings were integrated with the LSTS
Toolchain by constructing a Task in DUNE for interfacing with
the on-board microcontroller. DUNE and the microcontroller
were communicating through the MAVlink protocol [29] over
a serial interface. MAVlink has a small overhead, suitable for
low-bandwidth communication channels. The module keeps
track of the vehicles current state and passes data by broadcast-
ing IMC messages on the network. It also forwards commands,
such as way-points, to the MCU.

One DUNE Task was responsible for interfacing data from
the time of arrival (ToA) and location tagger. This task was
only active in the three tracking vehicles that were equipped
with acoustic receivers. It utilized GPS for reference and
had an accuracy of ∼ 1 ms and ±2 meters. The task was
developed at the Norwegian University of Science and Tech-
nology (NTNU), which also owns and manages the acoustic
equipment. A custom text-based protocol were used over this
serial interface.

3) Communication: A network was established using five
Ubiquiti Bullet M5Ti radios, each with a pair of 8 dBi antennas
attached. All ducklings were equipped with a radio and another
one was used as a base station on land. The range of the

Fig. 5. Block diagram of the low-level control used by the ducklings. θref
is the absolute bearing towards the coordinate x, θ the current bearing and ψ
the yaw rate. u is the combined inputs to the thrusters used both for yaw and
forward propulsion v.

network was limited mainly by environmental factors and
antenna placement. The allowable ranges for the network to
stay robust was determined by trial and error to be up to 500-
600 m, and was a limiting factor in the experimentation.

4) Acoustic Transmitter: The transmitter was a small acous-
tic fish-tag designed by Thelma Biotel. There are various
types of transmitters available, but the model used in these
experiments was an ADT-16 which periodically sends its ID
and depth. The transmitters are 70 mm in length and 16 mm
in diameter. The tag is operating at a narrow-band frequency
centered around 67 kHz. Period between transmissions were
set to 8 seconds. Range depends on several environmental
factors but in good conditions 500-1000 meters is expected.

5) Acoustic Receiver: The Thelma Biotel TBR 700 RT was
used as a compatible receiver, where RT is short for real-
time. The real-time feature of these receivers was necessary for
the experiments as it made it possible to make accurate time
stamps of the received signal. Accurately determining the time
of arrival of the signal is a requirement for the localization to
work. The measurements of the receivers are 230 mm length,
75 mm diameter and 1140 grams.

6) Low-level control and path-following: Through the
MCU, the ducklings could control their navigation au-
tonomously and employ basic path-following, either on pre-
defined trajectories or towards specific way-points. From for
instance xi,N and xi in the formation control algorithm, θi,ref
was calculated as the reference bearing angle between the two
coordinates. Using two cascaded PID-loops, input to the two
thrusters at the back of the vehicle were given to control the
yaw ψ and direct the vehicle towards xi.

The forward propulsion was set as vi,ref and was held by the
use of a third PID-loop. Since the two thrusters have limited
power output, a weighting had to be applied for high yaw rates.
In that case, the yaw got priority over the forward propulsion
until the desired heading was reached. An explaining figure of
the control chain for one duckling can be seen in Figure 5.

To limit unnecessary power usage, the positional control is
not activated if the duckling is close enough to it goal. In this
case inside a five meter radius. Control of the ducklings could
also be performed manually via radio transmitters. This was
very useful for the times when network communication was
lost and the ducklings needed to be driven closer or retrieved.



7

Fig. 6. Example of how the reviewing interface looks in the software Neptus,
taken from one result of a preliminary test close to KTH, Stockholm.

B. Implementation of the control algorithm
Every time t0 + Nτ , the measured states xi,N , i = 1, 2, 3

and xT,N were made available in the network through DUNE.
The next iterations xi of (20) were calculated by optimizing
over the potential function Vtot on a separate computer running
the interface program Neptus. The result served as command
instructions for the ducklings over the remainder of t0 + Nτ
until t0 +(N+1)τ . The optimization algorithm was written in
Java and used the non-linear least square Levenberg-Marquardt
solver included in the open source Apache Commons Math
package.

1) Target localization: Additionally at each time t0 + Nτ ,
the state of the target xT,N was trilaterated using the time-
stamped data from the other instances of DUNE in the net-
work, implemented as its own task. Using three agents, time-
difference-of-arrival could be utilized for the localization. The
used algorithm employs a three stage Kalman filter cascade
[30]. The method relates to extended Kalman filtering, and
has the advantage that convergence can be guaranteed under
mild assumptions.

2) Neptus: High level control and monitoring of the duck-
lings were achieved through the command and control program
Neptus, part of the LTST Toolchain. The formation control
algorithm was designed as a module that can be turned on and
off inside the program, and where parameters such as αi and
formation distances can be changed.

Neptus gathers all data from nodes in the network, and any
computer with Neptus can send control instructions to any
vehicle with DUNE. The data is recorded and can be reviewed
and analyzed, for instance by replaying the whole experiment.
Being able to have multiple simultaneous instances of Neptus
was reassuring since there was less risk of potentially losing
important data. In Figure 6 an image can be seen of the
reviewing interface.

VI. EXPERIMENT

A series of tests were performed at Lännerstasundet, Stock-
holm. Four ASVs were employed and the manually controlled
ASV acted as the target by carrying the acoustic transmitter.
Target estimations were performed and recorded every 8th

Fig. 7. Three of the "ducklings" out on the water.

Fig. 8. Partial screen capture of the interface in Neptus during execution of
the experiment. The coloured dots are current values of xi while the arrows
are actual positions xi,N of the ASVs with attached receivers. The full green
circle is the current radii of Φ, i.e. the desired distance from agent to target.

seconds, and the positions of the ASV agents recorded every
2nd seconds. Several different sizes of the equilateral triangle
formation were used. An image from the tests can be seen in
Figure 7.

The objective of the test was to evaluate the full scale
system with the two main components, i.e. the formation
control algorithm and the location estimation algorithm. The
formation control algorithm had ahead of time been applied
to the ASVs and tested on its own, which was very useful for
properly adapting the system before the full scale integration.
The accuracy of the tracking was evaluated by the fact that
the absolute position of the ASV carrying the transmitter was
known. An image of the interface in Neptus can be seen in
Figure 8 to better visualize how the system operated.

The navigational performance of the ASVs became degraded
somewhat after several hours in water, causing a slight differ-
ence in handling between them. Also, the internal compass
often did not provide an accurate heading, making the ASVs
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Fig. 9. Experimental result showing how the agent formation converges to the
desired distances while the estimated target position goes towards the actual.
The ducklings (blue, green and magenta dots) start in almost collinear positions
with the target (black), which gives a bad estimated target position (red).
Desired agent positions (circles) are calculated from the current positions.
As time increases the actual agents converge to a better formation and the
estimation error decreases. Four steps of the process are shown.

behave erratically before gaining enough speed to use the GPS
trajectory. But overall, the ducklings were a useful test platform
because of their agility and appropriate size. Larger vehicles
would be harder to handle and transport, and smaller vehicles
affected more by the sea state. Future addition of differential
GPS with compass heading and improvement of the integrity
of the hull would improve the robustness of the platforms.

A. Results
The system was running successfully for several hours on

the last day of experimentation. Three types of collected results
will here be presented.

At time t = 0 in Figure 9, we can see how the agents start in
sub-optimal initial positions where they are almost collinear.
The estimation xT,N of the target is initially inaccurate but
the estimation error decreases as the agents move closer to the
desired formation. Figure 10 shows the formation convergence
by which the result from Section IV is demonstrated. It was
shown that a system of agents under the given control law
(12) will converge to the formation Φ (2) for any non-collinear
initial state. In fact, a collinear initial state would be impossible
to achieve in a setting affected by any type of disturbances.
The experiment also shows that the error between the estimated
state of the target xT,N and the formation centroid xc decreases
and eventually aligns when the formation converges.

Figure 11 shows an experiment for a longer continuous time.
The addition of the term αi, i = 1, 2, 3, added to the agent
dynamics (20), was here evaluated as a proof-of-concept by
manually increasing the value for the blue agent until sufficient
effect was observed. The resulting trajectory became shorter
and as can be seen the whole formation rotated clockwise. The
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Fig. 10. Plot of the errors of the formation when converging to surround the
target. The distance between the ASVs and the actual position of the target
goes to toward the set distance of r = 50 meters while the distances between
each ASV goes towards di,j = d =

√
3r.

Fig. 11. Tracking of the moving target during several minutes, from the left
most position to the the lower right at four time steps. Actual position in black
and estimated in red. The agents are able to follow the target and adapt their
movement based on the weights αi.

purpose of having control over this variable was to potentially
decrease the energy usage in the affected agent. Loosing one
agent because of lack of energy would mean that the tracking
system would be unable to continue. Adaptively changing the
value of a time-variant αi(t) for each agent would be a way to
improve the system performance, for instance by connecting
it to measured fuel levels.

In Figure 12, a plot of the error between the estimated
target position and the measured value of the carrying agents
position can be seen with the formation radius set to r = 50
meters. The value of r was set by changing the definition of
Φ, which for this formation had di,j = d =

√
3r. Since the

recording frequency of the target estimation was lower than for
the carrying agent position, the plot gets a saw-tooth shape.
The path of the target can be seen in the lower figure. The plot
shows that the estimation error never went above the in-radius
25 meters, meaning that the target estimation did not risk
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Fig. 12. Plot of the error between the actual and estimated target position over
700 seconds with a desired formation with 50 m radius. The path of the target
in the lower figure. Initial and final positions as circle and dot respectively.

leaving the interior of the formation. Two distinct regions can
be seen. One with higher error where the target traveled along a
continuous trajectory and one with slightly lower errors where
it only made small movements, distinguished by the short and
jagged appearance. The first case was the most important since
this was when the target could potentially escape if the error
kept growing.

The tracking worked successfully for both smaller and larger
formations. In Figure 13 the estimation error can be seen for
two additional test runs, now with radius 25 and 100 meter.
Both tests began from positions where the target was relatively
stationary, which can be seen in the low error for the first
300 seconds in the 100 meter test. Apart from the slightly
larger error in the beginning of the 25 meter test, the values
of the errors are comparable between all three shown tests.
However, the smaller the formation the easier it would be
for the target to leave the inside of the formation, creating
a perhaps irreversible feedback loop of increasingly worse
estimations. Larger formations would decrease this possibility
but with instead the problem of more attenuated signals, where
radii up to 150 meters were tried successfully in these tests.
The upper limit was in our case not determined by the range of
the acoustic transmitter but by the failure of the communication
network over too large distances. This can for instance be seen
at the end of the 100 meter test. Communication was lost to
one agent, and by result the estimation error kept growing to
unrecoverable levels.

Although the achieved distances between agents were very
promising, for future studies the network stability and range
should be improved. How the system would be able to han-
dle loss of the acoustic transmitter signal by one or more
agents would be an interesting factor to investigate. A related
factor would also be different repetition frequencies of the
transmitter, where long periods of silence would set an upper
limit on system performance. Moreover, how the system could
incorporate time-varying formations would be studied in the
future as well.
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Fig. 13. Plot of the error of the estimated target position for two additional test
runs, with the radius of the desired formation at 25 and 100 meters respectively.

VII. CONCLUSION

This paper has investigated a novel approach to tracking
of underwater targets with the use of autonomous surface
vehicles. By creating a formation around the target with the
vehicles, we were able to provide a setting from which a
trilateration algorithm could be used to localize the target.
Doing this continuously, the formation of agents was able to
adapt so that the target was not lost.

The main focus has been on the control algorithm of
the agents and its application. It was proven that a system
consisting of three agents forming a triangle formation had the
property of almost global stability under the stated control law,
a result not found in previous literature. Through an extension
of the control law, where the formation centroid was made
to track the target, it was possible to apply the result to the
tracking problem. Application to a system of real autonomous
surface vehicles was then realized, providing a way to verify
the performance and show the potential of the method.

Experiments performed showed that the method was viable
and continuous tracking was possible without losing the target
for extended periods of time. The constructed vehicles were
also shown to be reliable in the performance of the task. Used
as a target was in this case a small acoustic receiver fastened
below a fourth vehicle. This simulated the behavior of a fish.
For future development of the method, plans are to use real fish
as the target. This would show the performance when faced
with highly erratic behavior, now also with changes in depth,
in a realistic scenario. If successful, larger scale utilization can
be considered.

APPENDIX A
STABILITY OF THE FORMATION WITHOUT THE TARGET.
In this appendix, we shall prove that for a three agent

(realizable) triangle formation, using control protocol (8), the
desired formation is almost globally stable. Note that the
system (8) is autonomous. Since a full stability analysis of the
formation control problem with an arbitrary number of agents
is still an open problem, we only consider the case with three
agents, i.e., n = 3.
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Fig. 14. The simulation of the protocol (21) with unrealizable formation.

Using the potential function (4), the almost global conver-
gence to the desired formation with three and four agents have
been developed in [9] and [22]. Moreover, the analysis there
was based on the Hessian matrix of the potential function,
hence it can not be extended easily to the control law based
on the potential function (5).

In this analysis, we re-index the edges as 1 = (1, 2), 2 =
(2, 3), 3 = (3, 1). By using the same reasoning as in [9], the
rank preserving is guaranteed. Indeed, denote X = [x1, x2, x3]
and Z = [z1, z2, z3], where both belong to R2×3, the system
(8) can be rewritten as

Ẋ =−XE> (21)

where E = BĒB> and Ē = diag(e) = diag(ρ1, ρ2, ρ3). The
dynamic of Z follows Ż = −ZĒB>B. Hence by Lemma 1.22
in Chapter 5 of [31], we have that for any realizable formation
and finite time interval I , rank(Z(t)) = rank(Z(0)) for t ∈ I .
However, as pointed out in [9], rank(Z(t)) can be degenerated
as t→∞, especially if the formation is not realizable, see the
following example.

Example 1. In this example, we present two simulations of the
system (21). In Fig. 14, we implement the protocol to achieve
an unrealizable formation with lengths of the edges equal to
1,1 and 5. The empty circles and solid circles are the initial
and final positions of the agents, respectively. The dashed arc
is a line segment between the final positions of the agent 1
and 3.

In Fig. 15, the same protocol is implemented to achieve a
realizable triangular formation, with lengths of the edges equal
to 3,4 and 5, which is plotted as the dashed line segments.

To begin the proof, we first recall the following result from
[10], which is not limited to the case with three agents.

Lemma A.1. Consider the system (8) and assume the for-
mation graph is connected, then ui → 0 as t → ∞ for all
agents.
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Fig. 15. The simulation of the protocol (21) with realizable triangular
formation.

The set of the equilibrium of (8) is denoted as

H = {x ∈ R6 | R>(z)e = 0} (22)

where R(z) is defined as in (6), and the sets of correct and
incorrect equilibria are denoted as

Hc ={x ∈ R6 | R>(z)e = 0, e = 0} (23)
Hi ={x ∈ R6 | R>(z)e = 0, e 6= 0}, (24)

respectively. Notice that for planar agents, any one dimensional
subspace is invariant and the set

Hl = {x ∈ R6 | R>(z)e = 0, rank(Z) = 1} (25)

is one set of undesired equilibria. It can be easily shown that,
for a triangle formation, Hl = Hi. Indeed, if not, for any
incorrect formation which is not collinear, the force on some
agent will not be balanced. Denote η = {x ∈ R6 | rank(Z) =
1}. In the rest of this section, we shall only refer to Hl instead
of Hi.

The main result is formulated as follows.

Theorem A.2. Consider the system (8) with initial positions
in R2, then the set Hc is almost globally stable.

Before we prove Theorem A.2, we need the following
lemma.

Lemma A.3. For any equilibria x∗ in Hl with (1, 3) being
the longest edge, then we have

‖x∗1 − x∗2‖ < d12, ‖x∗2 − x∗3‖ < d23, ‖x∗3 − x∗1‖ > d31.
(26)

Proof: Note that the dynamic (8) with three agents can
be rewritten as

ẋ1 = (ρ1 + ρ3)(x2 − x1) + ρ3(x3 − x2) (27)
ẋ2 = ρ1(x1 − x2) + ρ2(x3 − x2) (28)
ẋ3 = ρ3(x1 − x2) + (ρ2 + ρ3)(x2 − x3). (29)
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Since (1, 3) is the longest edge, then x∗2 is between x∗1 and
x∗3. Equation (28) then implies that at equilibrium, ρ1 and ρ2
have the same sign. Furthermore, equations (27), (29) also
imply that ρ1 + ρ3 and ρ2 + ρ3 have opposite signs from ρ3.
Hence, ρ1 and ρ2 have opposite signs from ρ3. Since e3 is the
longest edge, it can be seen that ρ3 < 0, ρ1 > 0 and ρ2 > 0
cannot hold. Indeed, if that holds, we have d13 > d12 + d23
which violate the triangle inequality. Thus, we conclude that
at equilibrium ρ1 < 0, ρ2 < 0, ρ31 > 0 and the conclusion
follows.

Proof of Theorem A.2: Note that the right-hand-side of
the system (8) is Lipschitz continuous, together with the fact
that the 1-dimensional subspace η is invariant, then from any
arbitrary initial positions, no trajectories can reach η at any
finite time. Indeed, if not, then by Picard-Lindelöf theorem
[32], the backwards uniqueness of the solution is violated.

Then if a trajectory, with arbitrary initialization, converges
to Hl, it can only converge from R2 \ η, i.e., x(t) /∈ η,∀t > 0
and x(t)→ Hl as t→∞.

In the following, we prove the trajectories, from any arbi-
trary initial condition, can not converge to η asymptotically
either. We prove this by discussing the possible converging
scenarios and contradictions by using perturbation analysis.

It can be seen in the set Hi, that the triangle inequality
degenerate to equality. Without loss of generality, we consider
the case ‖x1−x2‖+ ‖x2−x3‖ = ‖x3−x1‖ and the function

W (t) := ‖x1 − x2‖+ ‖x2 − x3‖ − ‖x3 − x1‖, (30)

which is zero when x2 is in the middle of and collinear with
x1 and x3, and is positive otherwise.

Here we shall prove that W does not converge to zero. The
dynamic of W is given as

dW

dt
=

1

‖x1 − x2‖
(x1 − x2)>(ẋ1 − ẋ2)

+
1

‖x2 − x3‖
(x2 − x3)>(ẋ2 − ẋ3)

− 1

‖x3 − x1‖
(x3 − x1)>(ẋ3 − ẋ1)

=: T1 + T2 − T3,

where

T1 =− 2ρ1‖x1 − x2‖+ ρ2‖x2 − x3‖ cos〈x1 − x2, x2 − x3〉
+ ρ3‖x1 − x3‖ cos〈x1 − x2, x3 − x1〉

T2 =− 2ρ2‖x2 − x3‖+ ρ1‖x1 − x2‖ cos〈x1 − x2, x2 − x3〉
+ ρ3‖x3 − x1‖ cos〈x3 − x1, x2 − x3〉

T3 =− 2ρ3‖x3 − x1‖+ ρ1‖x1 − x2‖ cos〈x1 − x2, x3 − x1〉
+ ρ2‖x2 − x3‖ cos〈x2 − x3, x3 − x1〉.

When W is sufficiently small, we have that the cosines in
Ti, i = 1, 2, 3 can be approximated by

cos〈x1 − x2, x2 − x3〉 = 1− ε12
cos〈x1 − x2, x3 − x1〉 = −1 + ε23
cos〈x3 − x1, x2 − x3〉 = −1 + ε31,

x2

x1 x3

ε31 ε23

ε12

Fig. 16. Illustration of the formation approaching Hl. Arrows on edges
describe the defined direction, x1−x2 etc., and εij represent angles between
the edges.

where ε12, ε23, ε31 are small positive variables that converge
to 0 as W → 0, see Figure 16 for graphical explanation.

Then the time derivative of W can be approximated as

Ẇ = ‖x1 − x2‖ρ1(−ε12 − ε31) + ‖x2 − x3‖ρ2(−ε12 − ε31)

+ ‖x3 − x1‖ρ3(ε23 + ε31).

Furthermore, since by Lemma A.3, ρ1, ρ2 < 0 and ρ3 > 0,
we have Ẇ > 0 whenever W is sufficiently small. We
conclude that W does not converge to zero for any arbitrary
initialization. Using the same analysis for other equilibria in
Hl, we have that for any arbitrary initialization, the trajectory
does not converge to Hl. Finally, note that the set Hc ∪Hl is
the whole equilibria set, then the convergence to Hc from any
arbitrary initial position is proved.

Remark 4. Essentially, the above result can be generalized to
arbitrary potential functions.
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