Co-simulation as a Fundamental Technology for Twin Ships
Peer reviewed, Journal article
Published version
View/ Open
Date
2020Metadata
Show full item recordCollections
Abstract
The concept of digital twins, characterized by the high fidelity with which they mimic their physical counterpart, provide potential benefits for the next generation of advanced ships. It allows analysis of data and monitoring of marine systems to avoid problems before they occur, and plan for the future by using simulations. However, issues related to integration of heterogeneous systems and hardware, memory, and CPU utilization makes implementing such a digital twin in a monolithic or centralized manner undesirable. Co-simulation addresses this problem, allowing different sub-systems to be modelled independently, but simulated together. This paper presents the ongoing work towards realizing a digital twin of the Gunnerus research vessel by applying co-simulation and related standards. The paper does not present a complete, ready-to-use digital twin. Rather it presents the preliminary results, procedure, and enabling technologies used towards realizing one. In order to accommodate this goal, a novel co-simulation solution, developed in cooperation by members of the Norwegian maritime industry, is presented. Furthermore, a maneuvering case-study is carried out, utilizing pre-recorded sensor data obtained from the Gunnerus. Through a comparative study with the real maneuver in terms of speed, course, and power consumption, the proposed approach is verified in simulation.