• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Investigation of Development of the Earth Pressure Coefficient at Rest in Clay During Creep in the Framework of Hyper-Viscoplasticity

Grimstad, Gustav; Long, Michael; Dadrasajirlou, Davood; Ghoreishian Amiri, Seyed Ali
Peer reviewed, Journal article
Accepted version
Thumbnail
View/Open
Grimstad (451.4Kb)
URI
https://hdl.handle.net/11250/2726082
Date
2021
Metadata
Show full item record
Collections
  • Institutt for bygg- og miljøteknikk [3702]
  • Publikasjoner fra CRIStin - NTNU [26751]
Original version
10.1061/(ASCE)GM.1943-5622.0001883
Abstract
The in situ earth pressure coefficient at rest (K0) for clay has been widely discussed in the literature. In engineering practice, the empirical relationships between K0, the overconsolidation ratio (OCR), and the normally consolidated value (KNC0), is often used. Where KNC0 is as a function of friction angle (φ). These relationships do not distinguish between an increase in OCR that is due to unloading or the creep of the material. Although there is a significant amount of literature on the measurement of the change in K0 during unloading, there is a lack of data on the evolution of K0 due to creep. The few existing in situ measurements of K0 are highly uncertain and are difficult to use to investigate the time evolution of K0. Therefore, there is no clear consensus on the time evolution of K0 within the geotechnical community. Over the last 20 years, several creep models for clay have been developed within the framework of elastoviscoplasticity. One common feature of many of these models is that they only predict a minor change in K0 with time, because K0 is given by one unique position on the potential surface. This contrasts with the unproven opinion of many practitioners who think that K0 increases with time (even toward unity). To broaden the perspective of the discussion, this paper addresses the time evolution of K0 in the framework of hyper-viscoplasticity. This framework offers a possibility for an increase in K0 (even toward unity under certain conditions).
Publisher
American Society of Civil Engineers (ASCE)
Journal
International Journal of Geomechanics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit