Vis enkel innførsel

dc.contributor.authorPontes-Filho, Sidney
dc.contributor.authorLind, Pedro
dc.contributor.authorYazidi, Anis
dc.contributor.authorZhang, Jianhua
dc.contributor.authorHammer, Hugo Lewi
dc.contributor.authorMello, Gustavo
dc.contributor.authorSandvig, Ioanna
dc.contributor.authorTufte, Gunnar
dc.contributor.authorNichele, Stefano
dc.date.accessioned2021-01-26T08:24:17Z
dc.date.available2021-01-26T08:24:17Z
dc.date.created2020-06-11T15:09:31Z
dc.date.issued2020
dc.identifier.isbn978-3-030-43722-0
dc.identifier.urihttps://hdl.handle.net/11250/2724664
dc.description.abstractDynamical systems possess a computational capacity that may be exploited in a reservoir computing paradigm. This paper presents a general representation of dynamical systems which is based on matrix multiplication. That is similar to how an artificial neural network (ANN) is represented in a deep learning library and its computation can be faster because of the optimized matrix operations that such type of libraries have. Initially, we implement the simplest dynamical system, a cellular automaton. The mathematical fundamentals behind an ANN are maintained, but the weights of the connections and the activation function are adjusted to work as an update rule in the context of cellular automata. The advantages of such implementation are its usage on specialized and optimized deep learning libraries, the capabilities to generalize it to other types of networks and the possibility to evolve cellular automata and other dynamical systems in terms of connectivity, update and learning rules. Our implementation of cellular automata constitutes an initial step towards a more general framework for dynamical systems. Our objective is to evolve such systems to optimize their usage in reservoir computing and to model physical computing substrates. Furthermore, we present promising preliminary results toward the evolution of complex behavior and criticality using genetic algorithm in stochastic elementary cellular automata.en_US
dc.language.isoengen_US
dc.publisherSpringeren_US
dc.relation.ispartofApplications of Evolutionary Computation
dc.subjectDynamical Systemsen_US
dc.subjectDynamical Systemsen_US
dc.subjectEvolusjonen_US
dc.subjectEvolutionen_US
dc.subjectImplementasjonen_US
dc.subjectImplementationen_US
dc.titleEvoDynamic: A Framework for the Evolution of Generally Represented Dynamical Systems and Its Application to Criticalityen_US
dc.typeChapteren_US
dc.description.versionacceptedVersionen_US
dc.source.pagenumber133-148en_US
dc.identifier.doihttps://doi.org/10.1007/978-3-030-43722-0_9
dc.identifier.cristin1815095
dc.relation.projectNorges forskningsråd: 270961en_US
dc.description.localcodeThis is a post-peer-review, pre-copyedit version of a chapter. The final authenticated version is available online at: https://doi.org/10.1007/978-3-030-43722-0_9en_US
cristin.ispublishedtrue
cristin.fulltextpostprint
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel