Show simple item record

dc.contributor.authorKristiansen, Kim
dc.date.accessioned2020-11-04T12:12:25Z
dc.date.available2020-11-04T12:12:25Z
dc.date.created2020-09-29T12:26:53Z
dc.date.issued2020
dc.identifier.issn2296-424X
dc.identifier.urihttps://hdl.handle.net/11250/2686383
dc.description.abstractInspired by recent work on the thermodynamic properties of the Lennard-Jones/spline (LJ/s) fluid [1], we have considered the transport properties of the simple LJ/s fluid. The binary scattering problem for LJ/s particles was solved numerically, and results were compared to the untruncated LJ fluid. The scattering dynamics are affected both by the restricted range of the LJ/s potential, and the stronger attraction between LJ/s particles at distances between the inflection point of the potential and the cutoff range. At small relative kinetic energies, it was found that the scattering cross section of the LJ/s particles is much smaller than that of the LJ particles. The shear viscosity, thermal conductivity, and the self-diffusion coefficient were calculated from the scattering cross sections by the Chapman-Enskog method, and a six-parameter equation with a worst case accuracy of roughly 1% over the temperature interval [0.1, 1000] in LJ units is provided. The smaller scattering cross section at low kinetic energies leads to transport coefficients of the LJ/s fluid to be greater than those of the LJ fluid at low temperatures, and were all found to be roughly 50% greater at T = 0.1, which is the lowest temperature considereden_US
dc.language.isoengen_US
dc.publisherFrontiers Mediaen_US
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleTransport Properties of the Simple Lennard-Jones/Spline Fluid I: Binary Scattering and High-Accuracy Low-Density Transport Coefficientsen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionpublishedVersionen_US
dc.source.volume8en_US
dc.source.journalFrontiers in Physicsen_US
dc.identifier.doi10.3389/fphy.2020.00271
dc.identifier.cristin1834826
dc.description.localcodeCopyright © 2020 Kristiansen. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these termsen_US
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Navngivelse 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Navngivelse 4.0 Internasjonal