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Inspired by recent work on the thermodynamic properties of the Lennard-Jones/spline

(LJ/s) fluid [1], we have considered the transport properties of the simple LJ/s fluid. The

binary scattering problem for LJ/s particles was solved numerically, and results were

compared to the untruncated LJ fluid. The scattering dynamics are affected both by the

restricted range of the LJ/s potential, and the stronger attraction between LJ/s particles

at distances between the inflection point of the potential and the cutoff range. At small

relative kinetic energies, it was found that the scattering cross section of the LJ/s particles

is much smaller than that of the LJ particles. The shear viscosity, thermal conductivity,

and the self-diffusion coefficient were calculated from the scattering cross sections by the

Chapman-Enskog method, and a six-parameter equation with a worst case accuracy of

roughly 1% over the temperature interval [0.1, 1000] in LJ units is provided. The smaller

scattering cross section at low kinetic energies leads to transport coefficients of the LJ/s

fluid to be greater than those of the LJ fluid at low temperatures, and were all found to

be roughly 50% greater at T = 0.1, which is the lowest temperature considered.

Keywords: single phase fluid, kinetic theory, transport properties, scattering, molecular dynamics

1. INTRODUCTION

Knowledge of the transport properties of fluids is key to understanding a wide range of non-
equilibrium behavior, such as thermal conduction, viscous flow, and diffusion. While the theory
of non-equilibrium thermodynamics provides closure relations for describing fluxes in terms
of thermodynamic driving forces, the functional dependence of the corresponding transport
coefficients on thermodynamic variables must be supplied either from experiments, or calculated
by means of statistical mechanics from a model interaction potential. The Lennard-Jones 12-6
potential (LJ) is a particularly ubiquitous and simple model potential that captures both the
attraction between electrically neutral particles at long range, and their mutual repulsion at short
range. The infinite range of this potential is, however, the cause of some problems in the application
of periodic boundary conditions in direct molecular dynamics simulations. For this reason, the
potential is often replaced in practical calculations by a truncated version with a finite range. One
such potential is the Lennard-Jones/spline model (LJ/s) [2], which truncates the potential smoothly
by means of a cubic spline. Recently, a detailed assessment was made on the effect of this type of
truncation on the equilibrium thermodynamic properties of the resulting fluid [1]. Inspired by this
work, it is of interest to see how this truncation affects non-equilibrium properties.
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Transport properties of the untruncated Lennard-Jones fluid
have been studied for nearly a century, and transport coefficients
are known to a high degree of precision over a wide range
of temperatures and densities. While the properties of the LJ
and LJ/s fluids are expected to be similar, their difference may
be of great importance in precise calculations of quantities of
theoretical interest, such as the entropy generated by irreversible
processes. In particular, the Chapman-Enskog values, which
are expected to be accurate at low densities and low Knudsen
numbers, are useful for several reasons—they supplement data
from molecular dynamics in the low-density regime where the
small number of particles gives low-quality statistics, and are
also used as reference values in the modified Enskog theory [3],
and for prediction through entropy scaling, as in e.g., [4]. High-
accuracy calculations are therefore important as the basis for
further work, such as the prediction of transport coefficients at
higher densities, which will be the topic for a future paper.

2. THEORY

2.1. Binary Scattering
The binary scattering problem of the Lennard-Jones fluid
is already well-studied, and detailed recent analyses can be
found in [5] and [6]. We consider instead the Lennard-Jones/
spline potential

V(r) =











4
(

r−12 − r−6
)

r < rs

a (r − rc)
2 + b (r − rc)

3 rs ≤ r ≤ rc

0 r > rc

(1)

which behaves like a Lennard-Jones potential up to a separation
equal to the inflection point r = rs. At longer separation, the
potential drops smoothly to uniform at r = rc by means of a
cubic spline. The coefficients a and b are chosen such that V (r)
and the force f (r) = −∇V (r) are continuous at r = rs. Exact
values of these parameters can be found in [1]. We consider
here the case that the masses of the scattering particles are equal,
and all quantities are dimensionless (Lennard-Jones units). The
shape of the potential and the corresponding force is shown in
Figure 1 along with the standard LJ potential. In a large part of
the spline region, the force of attraction between LJ/s-particles
is significantly larger than the corresponding force between LJ-
particles. As we will see, this feature can lead to appreciable
differences in the particle dynamics when collision trajectories
are off-center.

We are interested in the shape of trajectories for different
possible initial relative velocities and positions. Let θ be the
angle between the particle positions with θ = 0 parallel to
the initial relative velocity. A useful quantity is the relative
angular momentum

pθ =
r2

2

dθ

dt
(2)

which is a conserved quantity by virtue of V(r) being a
central-force (θ-independent) potential. Since V(r) is also time-
independent, the total energy

E =
1

4

[

(

dr

dt

)2

+ r2
(

dθ

dt

)2
]

+ V (r) (3)

is also conserved. Let g be the initial relative velocity as the
particles approach each other from infinity, and let the impact
parameter ℓ be such that the initial (and constant) angular
momentum is gℓ/2. The initial (and constant) total energy is then
simply g2/4. Varying g and ℓ from 0 to∞ then allow us to explore
all possible trajectories during such an encounter. The trajectory
may be found by solving the system

d2r

dt2
=

g2ℓ2

2r3
+ f (r)

dθ

dt
=

gℓ

r2

(4)

Conservation of energy allows us to integrate the radial equation
from second to first order

dr

dt
=

√

g2
(

1−
ℓ2

r2

)

− 4V (r) (5)

However, the sign is ambiguous, and care must be taken to avoid
unphysical solutions. Solving for dt and multiplying by pθ gives
an equation for the trajectory

dθ =
ℓdr

r2
√

1− ℓ2r−2 − 4g−2V (r)
(6)

By spacetime inversion symmetry, the trajectory is symmetric
about the line connecting the two particles when the interparticle
distance is at the trajectory minimum rm. Let the angular
coordinate at this point be 8. Since the particles approach from
infinity, we have

8 =
∫ ∞

rm

ℓdr

r2
√

1− ℓ2r−2 − 4g−2V (r)
(7)

The initial angle at infinity is π , and we are interested in the
scattering angle 2 = π − 28. The scattering angle as function
of g and ℓ fully determines the contribution of binary collisions
to the macroscopic hydrodynamical modes of the fluid in the
low-density limit.

2.1.1. The Distance of Closest Approach
The piecewise nature of the LJ/s potential means that the
equation determining rm depends on whether or not rm < rs.
In any case, the physical root must be the largest real root of
dr/dt = 0 satisfying rm ≤ rc, where we restrict our attention to
ℓ ≤ rc. For ℓ > rc, the particles will always remain out of range,
so rm = ℓ and trivially 2 = 0. Whether or not rm < rs depends
on whether or not the relative kinetic energy of the particles can
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FIGURE 1 | The Lennard-Jones/spline potential and the untruncated Lennard-Jones potential, plotted along with their corresponding forces.

overcome any energy barrier along the way to r = rs. The radial
energy barrier is due to the centrifugal potential offset by the
attractive potential. The height of this barrier is the maximum
Vmax
eff

of

Veff (r) =
(

gℓ

2r

)2

+ V (r) (8)

with rmax ≥ rs. Then, rm < rs if and only if

g2

4
> Vmax

eff (9)

If rm ≥ rs, we need to find the largest real rm such that

g2

4

(

1−
ℓ2

r2m

)

− a (rm − rc)
2 − b (rm − rc)

3 = 0 (10)

or, equivalently, the smallest real um : = 1/rm such that

c0 + c1um + c2u
2
m + c3u

3
m + u5m = 0 (11)

with monomial coefficients

c0 =
4b

g2ℓ2
c1 =

4a− 12brc

g2ℓ2
c2 =

12br2c − 8arc

g2ℓ2

c3 =
4ar2c − 4br3c − g2

g2ℓ2
(12)

We solve this equation in two stages—first, we locate all the real
roots of the equation by diagonalizing the companion matrix

C =













0 0 0 0 −c0
1 0 0 0 −c1
0 1 0 0 −c2
0 0 1 0 −c3
0 0 0 1 0













(13)

such that |umI− C| = 0 is equivalent to (11). The true turning
point is characterized by a positive radial acceleration. A secure

way of computing the physical solution is then to diagonalize C
and pick the largest real diagonal element that is smaller than rc
and gives a positive radial acceleration. The latter constraint is

g2ℓ2

r3m
+ 2f (rm) > 0 (14)

If no such eigenvalue exists, we infer that rm < rs, in which case
we need to find the largest real rm such that

g2

4

(

1−
ℓ2

r2m

)

− 4
(

r−12
m − r−6

m

)

= 0 (15)

or the smallest real um such that

b0 + b2u
2
m + b6u

6
m + u12m = 0 (16)

where

b0 = −g2/16 b2 = g2ℓ2/16 b6 = −1 (17)

subject to the constraint that rm < rs. The computation of
eigenvalues is restricted in precision by the conditioning of
the companion matrices. Therefore, we introduce as a second
calculation stage that the values obtained by this method be
refined further by using them as initial guesses to a more precise
root-finding algorithm. For this, we choose Halley’s method

ui+1 = ui −
2P (ui) P

′ (ui)

2 |P′ (ui)|2 − P (ui) P′′ (ui)
(18)

where P is either of the polynomials (11) or (16), and the
prime denotes the derivative with respect to the argument. The
convergence criterion is that the absolute value of P(ui) is smaller
than some tolerance. This way of computing rm ensures that we
always obtain the physical solution. This can also be double-
checked by direct integration of (4), which is a comparably
inefficient two-particle molecular dynamics approach, but serves
as a way to check the consistency of the obtained value of rm.
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2.1.2. The Scattering Angle
Having obtained accurate values of rm, the next step is to find
the scattering angle 2 by numerical integration of (7), where
rm appears as one of the integration limits. In this limit, the
integrand has a singularity, which will need to be dealt with some
care. Let u : = rmr

−1, such that

8 =
∫ 1

0

ℓdu
√

r2m − ℓ2u2 − 4(r2m/g
2)V (rm/u)

(19)

Let

G(u) =
ℓ

√

r2m − ℓ2u2 − 4(r2m/g
2)V(rm/u)

(20)

then, we apply a tanh-sinh type transformation, suitable for
dealing with endpoint singularities

∫ 1

0
duG(u) =

π

2

∫ ∞

0
dx

cosh (x)

cosh2
(

π
2 sinh (x)

)G
(

tanh
(π

2
sinh (x)

))

(21)
Applying the trapezoidal rule with spacing1x, the quadrature is
then

8 =
∫ 1

0
duG (u) (22)

≈
π1x

2

∞
∑

n=0

cosh (n1x)

cosh2
(

π
2 sinh (n1x)

)G
(

tanh
(π

2
sinh (n1x)

))

which is further approximated by truncating the sum. The
singularity is smeared out over an unbounded interval, and the
quadrature exhibits exponential convergence to the analytical
solution [7]. The scattering angle is then2 = π − 28.

2.2. Transport Coefficients
The low-density, low-Knudsen number limit of the transport
coefficients are obtained by solving the Boltzmann equation
for the one-particle probability density, and then calculating
the expectation values corresponding to the heat flux, pressure
tensor, and the diffusion flux in order to obtain the thermal
conductivity λ, the shear viscosity η, and the self-diffusion
coefficient D, respectively. The bulk viscosity of the simple fluid
is zero in this limit, because the particles have no internal
degrees of freedom. We choose the Chapman-Enskog approach
to solving the equation, which gives the following expressions for
η and λ [3]

η = Tb1 λ = −
5

2
Ta1 (23)

where T is the reduced kinetic temperature, and the coefficients
a1 and b1 satisfy the linear equations

∞
∑

p=1

bpBpq =
5

2
δ1q

∞
∑

p=1

apApq = −
15

4
δ1q (24)

where the matrix elementsApq and Bpq are

Apq : =
[

S
(p)
3
2

(

c2
)

c, S
(q)
3
2

(

c2
)

c

]

Bpq : =
[

S
(p−1)
5
2

(

c2
)

c◦c, S
(q)
5
2

(

c2
)

c◦c

]

(25)

where c = δv/
√
2T, and δv is the reduced peculiar velocity, while

cc = cc− Ic2/3. The Sonine polynomials are

S
(n)
k
(x) =

n
∑

p=0

(−x)p
(

k+ n
)

n−p

(n− p)!

p!
(26)

where the subscript means rq = r (r − 1) (r − 2) . . .
(

r − q+ 1
)

.
The brackets in (25) denote integrals that involve the scattering
angles obtained by solving the binary scattering problem, and can
be expressed as linear combinations of the well-known collision
integrals�(n,s) [3].

�(n,s) =
√

T

π

∫ ∞

0
dg′ exp

(

−g′
2
)

g′
(2s+3)

φ(n)

φ(n) = 2π

∫ ∞

0
dℓ
(

1− cosn2
)

ℓ (27)

where g′ = g/2
√
T, with g the relative velocity, ℓ

is the impact parameter defined in the preceding section,
and 2 is the scattering angle. General expressions for the
coefficients in these linear combinations were derived by
Tompson et al. [8, 9], who also gave explicit calculations up to
order 5.

In practice, the linear systems in (24) are solved approximately
by truncating the sums at some finite number k and solving
the resulting k × k linear systems, which is to truncate
the series expansion of the Chapman-Enskog solution to
the corresponding order in c2. We consider also the self-
diffusion coefficient, which can be obtained as the special
case of the interdiffusion coefficient of a binary mixture when
both components are actually the same. The interdiffusion
coefficient D12 of a binary mixture of particles with equal masses
is [3]

D12 =
√
T

2
x1x2d0 (28)

where d0 is found from the solution to

∞
∑

p=−∞
dpA

′
pq =

3
√
T

2n
δq0 (29)

with n the particle density, and xi = ni/n, where ni is the
number density of particles of component i. We are interested
in the case of a simple fluid, where x1 = x2. Let c1 and
c2 be the dimensionless peculiar velocities of components 1
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and 2. Manipulation of the expressions given in [3] gives in
that case

A′
pq

x1x2
=































[

S
(p)
3
2

(

c21
)

c1, S
(q)
3
2

(

c21
)

c1

]

12

+
[

S
(p)
3
2

(

c21
)

c1, S
(q)
3
2

(

c21
)

c1

]

1

p, q > 0
[

S
(p)
3
2

(

c22
)

c2, S
(q)
3
2

(

c22
)

c2

]

12

+
[

S
(p)
3
2

(

c22
)

c2, S
(q)
3
2

(

c22
)

c2

]

2

p, q < 0
[

S
(p)
3
2

(

c21
)

c1, S
(q)
3
2

(

c22
)

c2

]

12

q < 0 < p

(30)

and

A
′
0q

x1x2
=























2−1/2

[

c1, S
(q)
3
2

(

c21
)

c1

]

12

q > 0

−2−1/2

[

c2, S
(q)
3
2

(

c22
)

c2

]

12

q < 0

−2−1 [c1, c2]12 q = 0

(31)

where the brackets are analogous to those in (25), with subscripts
1 and 2 denoting collisions between pairs of particles of types
1 and 2, respectively, and the subscript 12 denoting collision
between the two different types. Treating x1x2d0 as the coefficient
to be determined, we need not worry about the exact values of
x1 and x2. Only that they are equal. This gives a result that is
independent of the values of x1 and x2, as it must be for the self-
diffusion coefficient. We see in particular that since [c1, c2]12 =
−4�(1,1), we obtain the first approximation

x1x2d
(1)
0 =

3
√
T

4n�(1,1)
H⇒ D(1) =

3T

8n�(1,1)
(32)

which is a familiar result in the literature. Calculating higher-
order collision integrals allows us to find correction terms
to this result up to any desired order in the polynomial
expansion. Such higher-order corrections are more important at
higher temperatures, as the contributions from greater powers
of c2 become more significant. Again, expressions for the
bracket integrals may be obtained from [8]. For convenience,
the matrix elements A′

pq/x1x2 have been calculated from the
bracket integrals and are given in the Supplementary Material

up to order 5. Since the collision integrals all depend only
on the temperature, the quantity nD is a function of the
temperature only.

3. RESULTS AND DISCUSSION

3.1. Binary Scattering
Equations (11) and (16) were solved on a patchwork of uniform
grids on the g, ℓ-plane numerically by implementation of a
looping algorithm in C++, using the Eigen package [10] to
calculate the eigenvalues of the companion matrices. Equation
(7) was then solved for each grid point, by implementing the
quadrature given in Equation (23), using the Boost C++ library
[11]. Both rm and 2 were calculated within an error tolerance
of 10−14 in reduced units. The distance of closest approach and
the scattering angle obtained for both LJ/s and LJ are shown as
functions of g for a few values of ℓ in Figure 2.

We observe that when g is small, the dynamics are dominated
by the potential energy of interaction, and rm → 1 because that

is the point where the mutual potential energy is equal to that at
infinite separation. When g is large, rm → ℓ as the energy barrier

between the particles is dominated by the centrifugal force. The
difference between the LJ and the LJ/s potential can be observed
when ℓ approaches the cutoff radius, rc, from below. The change
in rm is more sudden as a function of g for the LJ/s potential,
because the particles only interact in a short window of time as
the particles pass one another, and increasing g decreases the
length of this time interval. This has a more pronounced effect
on the scattering angle, where we see that when g is small and ℓ is
large, the LJ/s-particles only deflect each other slightly from their
initial paths, as their window of interaction becomes very short.
We observe the singularity where 2 → −∞, where particles go
into mutual orbit for an arbitrarily large number of revolutions
before separating.

The total cross sections φ(n) for n = 1, . . . , 6 were calculated
from the scattering angles, and some of them are given as
functions of g in Figure 3. For the Lennard-Jones particles, an
error was introduced by truncating the calculations at an upper
bound for ℓ. Using the estimate given by Equation (24) in
[5], this error was kept below machine precision by choosing
the upper bound for ℓ large enough. A discretization error
was also introduced, and will be assessed by its effect on the
transport coefficients.

At low velocities, the cross sections of the LJ particles are
orders of magnitude greater than those of the LJ/s-particles,
due to the infinite range of the LJ-potential. At high velocities,
their cross sections converge because the repulsive part of the
potential, which is the same for both types, dominates the
dynamics in this regime. The cross sections fall off asymptotically
as the inverse cube root of the relative speed, due to scattering
events becoming more similar to hard-sphere collisions with
an effective radius proportional to rm. The distance of closest
approach for head-on collisions is obtained by solving g2/4 =
V(rm), assuming that rm < rs

rm =
(

1

2
+

1

4

√

g2 + 4

)−1/6

≈
( g

4

)−1/6
g >> 1

(33)
so that the scattering cross section at high kinetic energy is
approximately proportional to r2m ∝ g−1/3.

3.2. Transport Coefficients
Having obtained the cross sections from solving the scattering
problem, the collision integrals �(n,s) needed for calculating the
transport coefficients may be obtained. The collision integrals
suffer a truncation error from calculating to an upper bound gs
and a lower bound gi for g, which is easily assessed by considering
the asymptotic behavior of the cross sections. Since the cross
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FIGURE 2 | The distance of closest approach, rm, and the scattering angle, 2, from binary scattering of Lennard-Jones (solid lines) and

Lennard-Jones/spline-particles (dashed lines) given as functions of the relative speed g for sampled values of the impact parameter ℓ.

FIGURE 3 | Samples of the total cross sections φ(n) calculated for both Lennard-Jones (solid lines) and Lennard-Jones/spline (dashed lines) particles, as a function of

the relative speed g. The stars are tabulated values of φ(1) for the LJ potential from [6].

sections fall off approximately as g−1/3 at large g, and falls off
even slower at small g, the truncation error is, approximately

A(n)T−s−3/2

(

∫ gi

0
dge−g2/4Tg2s+3 +

∫ ∞

gs

dge−g2/4Tg2s+8/3

)

where A(n) is some n-dependent constant. This becomes very
small for gs >> 1 and gi << 1, and was kept below machine
precision by choosing gs large enough and gi small enough for the
temperature range of interest. Having control over the truncation
errors in the ℓ, g-plane, the transport coefficients still suffer
from two additional sources of error—the error from discretizing

the ℓ, g-plane, and the error from truncating the momentum-
space polynomial expansion of the solution to the Boltzmann
equation. To assess the former, the transport coefficients of the
LJ/s fluid were calculated using different grid sizes, controlled
by a size parameter N. For the latter, the coefficients were
calculated with different truncation orders in momentum space.
These different solutions were compared to the most accurate
solution, to obtain upper bounds for the relative errors. This
is summarized in Figure 4, where we see that the upper bound
for the relative error due to discretization and truncation are
both on the order 10−5 for the most accurate calculations that
were carried out. The estimates are similar for the unmodified
Lennard-Jones fluid.
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FIGURE 4 | Discretization and truncation errors of the calculated transport coefficients of the Lennard-Jones/spline fluid. Top left: the estimated discretization error of

a grid with half the number of points as the largest grid used. Top right: The variation of the inf-norm of the discretization error with the number of grid points,

proportional to the size parameter N. Bottom left: the estimated truncation error by neglecting 5th order terms and higher (truncation order 4) in the Sonine polynomial

expansions. Bottom right: The variation of the inf-norm of the truncation error with the truncation order.

FIGURE 5 | Logscale plot of transport coefficients against kinetic temperature.

Bottom: Logscale plot of relative error in the optimized parameterization given

by Equation (34).

TABLE 1 | Optimized numerical values of the parameters defined in Equation (34)

for each of the transport coefficients.

nD η λ

a0 −1.9791 −2.2319 −0.9044

a1 0.5419 0.5703 0.5699

a2 0.3771 0.3485 0.3470

a3 0.1146 0.0811 0.0815

a4 −0.2484 −0.0879 −0.0723

a5 1.0316 0.9005 0.9017

The calculated values of η, λ, and nD of the LJ/s fluid are
shown in Figure 5 as functions of the temperature. The lowest
temperature considered here is 0.1, where the density has to be
extremely low in order to stay away from the gas-liquid phase
transition, see phase diagram in [1]. The highest temperature
was chosen to be 1,000, to demonstrate the convergence to
ordinary Lennard-Jones behavior at high temperatures. All
transport coefficients appear to have two distinct power law
regimes, separated by a sigmoidal region in the neighborhood
of the critical temperature. This motivates a parameterization on
the form

ln (ψ) = a0 + a1 ln (T)+
(

a2 + a3 ln (T)
)

tanh

(

ln (T)− a4

a5

)

(34)
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FIGURE 6 | Comparison of the transport coefficients ψ = D, η, λ of the Lennard-Jones and Lennard-Jones/spline fluids at different temperatures T, where D is the

self-diffusion coefficient, η is the shear viscosity, and λ is the thermal conductivity.

where ψ = η, λ, nD. The optimal parameters were found by
a uniform search in the parameter space, applying Newton’s
method to approach the local optima. The best optimum found
is assumed to be the global optimum. The relative errors of
the optimal fitting are also given in Figure 5 as a function of
temperature, and the numerical values of the optimal parameters
for each of the transport coefficients are given in Table 1. The
two asymptotical power law exponents are then a1 ± a3, while
a4 and a5 are the position and width of the sigmoidal region.
The remaining coefficients a0 and a2 are simply bias-correction
coefficients adjusting the positions of the optimal curves along
the ln (ψ)-axis.

We give also a comparison between the transport coefficients
of the LJ/s fluid and those of the untruncated potential.
As could be expected from the differences in the scattering
cross sections at low velocities, the differences between the
two fluids manifest themselves at low temperatures. At very
low temperatures, the transport coefficients of the LJ/s fluid
are significantly larger than those of the LJ fluid, around
50% at T = 0.1. In the Chapman-Enskog limit, that is,
low density and low Knudsen number, the only mode of
transport taken into account is that due to translation of
particles, as opposed to transfer by collisions. Due to the
truncated interaction range of the LJ/s particles, those particles
generally move more freely at long range than LJ particles
at the same temperature. At very low temperatures, the low
kinetic energy of the average particles is more easily overcome
by the infinite-ranged, though weak, attraction between LJ
particles, while LJ/s particles are completely unaffected at
distances greater than rc, no matter how low the kinetic
energy is. This leads to an overall more efficient transport
of particles and their momenta in a given direction. At

high temperatures, the differences between the two fluids
are negligible.

4. CONCLUSIONS

We have provided an account of the properties of binary
scattering events between LJ/s particles and their untruncated
LJ counterparts. The main difference is that for LJ/s particles,
the scattering angle is always zero when the impact parameter
is greater than the cutoff radius of the potential, whereas
the untruncated potential gives rise to a significant region of
deflecting and oribiting collisions even at large impact parameters
when the kinetic energy is small. The attractive force experienced
by the LJ/s particles between the cutoff radius and the inflection
point of the potential is stronger than that of the LJ particles,
which leads to a slightly different scattering angle landscape
in the region of orbital collisions. These differences lead to
the LJ/s potential providing a much smaller scattering cross
section than that provided by the untruncated potential, which
again leads to significant differences in transport properties at
low temperatures.

The shear viscosity η, the thermal conductivity λ, and the
self-diffusion coefficient D have been calculated, by application
of the Chapman-Enskog method, for temperatures between 0.1
and 1000 in LJ units, and a six-parameter equation (34) has been
provided, with a worst-case accuracy of roughly 1% across the
entire temperature range by using the coefficient values listed in
Table 1. Such a model is useful for making quick calculations
where an error of up to 1% is acceptable. It was observed that
all transport coefficients appear to obey a power law as a function
of the temperature at both high and low temperatures, with an
intermediate transition region close to the critical temperature.
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Comparisons were made between the LJ/s fluid and the
untruncated LJ fluid, see Figure 6. At high temperatures, the
transport properties are dominated by the repulsive part of the
potential, which is identical for the two potentials. Therefore,
the transport coefficients of the two fluids converge to the same
values as the temperature is increased. At lower temperatures,
the differences in the transport coefficients between the two
fluids become significant. At temperatures below unity, the
values diverge rapidly away from one another, with transport
coefficients of the LJ/s being roughly 50% larger than those of
the LJ fluid at T = 0.1, the lowest temperature considered in
this work. When the LJ/s potential replaces the LJ potential for
the sake of convenience in molecular dynamics simulations, it
is important to be aware of these differences when considering
subcritical temperatures. Further work will assess transport
properties at increased densities, using the values obtained here
in the low-density limit.
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