Vis enkel innførsel

dc.contributor.authorWu, Jianyang
dc.contributor.authorSnustad, Ingrid
dc.contributor.authorErvik, Åsmund
dc.contributor.authorBrunsvold, Amy
dc.contributor.authorHe, Jianying
dc.contributor.authorZhang, Zhiliang
dc.date.accessioned2020-04-20T08:13:33Z
dc.date.available2020-04-20T08:13:33Z
dc.date.created2020-02-19T11:16:17Z
dc.date.issued2020
dc.identifier.issn0957-4484
dc.identifier.urihttps://hdl.handle.net/11250/2651619
dc.description.abstractCO2 capture by dropwise CO2 condensation on cold solid surfaces is a promising technology. Understanding the role of the nanoscale surface and topographical features of CO2 droplet wetting characteristics is of importance for CO2 capture by this technology, but this remains unexplored as of yet. Here, using large-scale molecular dynamics (MD) simulations, the contact angle and wetting behaviors of CO2 droplets on pillar-structured Cu-like surfaces are investigated for the first time. Dynamic wetting simulations show that, by changing the strength of the solid–liquid attraction ${\varepsilon }_{{\rm{Cu}}-{{\rm{CO}}}_{{\rm{2}}}},$ a smooth Cu-like surface offers a transition from CO2-philic to CO2-phobic. By periodically pillared roughening of the Cu-like surfaces, however, a higher contact angle and a smaller spreading exponent of a liquid CO2 droplet are realized. Particularly, a critical crossover of CO2-philic to CO2-phobic can appear. The wetting of the pillared surfaces by a liquid CO2 droplet proceeds non-uniformly. A liquid CO2 droplet is capable of exhibiting a transition from the Cassie state to the Wenzel state with increasing ${\varepsilon }_{{\rm{Cu}}-{{\rm{CO}}}_{{\rm{2}}}},$ increasing inter-pillar distance, and increasing pillar width. The wetting morphologies of the metastable Wenzel state of a CO2 droplet are very different from each other. The findings will inform the ongoing design of CO2-phobic solid surfaces for practical dropwise condensation-based CO2 capture applications.en_US
dc.language.isoengen_US
dc.publisherIOPen_US
dc.titleCO2 Wetting on Pillar-Nanostructured Substratesen_US
dc.typePeer revieweden_US
dc.typeJournal articleen_US
dc.description.versionacceptedVersionen_US
dc.source.journalNanotechnologyen_US
dc.identifier.doi10.1088/1361-6528/ab7c49
dc.identifier.cristin1795747
dc.relation.projectNorges forskningsråd: 254813en_US
dc.relation.projectNotur/NorStore: nn9110ken_US
dc.relation.projectNotur/NorStore: nn9391ken_US
dc.description.localcodeLocked until 27.3.2021 due to copyright restrictions. This is an author-created, un-copyedited version of an article accepted for publication/published in [Nanotechnology]. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from it. The Version of Record is available online at http://dx.doi.org/10.1088/1361-6528/ab7c49en_US
cristin.unitcode194,64,45,0
cristin.unitnameInstitutt for konstruksjonsteknikk
cristin.ispublishedtrue
cristin.fulltextpreprint
cristin.qualitycode2


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel