Show simple item record

dc.contributor.authorHimanen, Lauri
dc.contributor.authorJager, Marc OJ
dc.contributor.authorMorooka, Eiaki V
dc.contributor.authorFederici Canova, Filippo
dc.contributor.authorRanawat, Yashasvi S
dc.contributor.authorGao, David Zhe
dc.contributor.authorRinke, Patrick
dc.contributor.authorFoster, Adam S
dc.date.accessioned2020-03-04T07:41:58Z
dc.date.available2020-03-04T07:41:58Z
dc.date.created2019-10-22T09:29:27Z
dc.date.issued2019
dc.identifier.citationComputer Physics Communications. 2020, 247 .nb_NO
dc.identifier.issn0010-4655
dc.identifier.urihttp://hdl.handle.net/11250/2645057
dc.description.abstractDScribe is a software package for machine learning that provides popular feature transformations (“descriptors”) for atomistic materials simulations. DScribe accelerates the application of machine learning for atomistic property prediction by providing user-friendly, off-the-shelf descriptor implementations. The package currently contains implementations for Coulomb matrix, Ewald sum matrix, sine matrix, Many-body Tensor Representation (MBTR), Atom-centered Symmetry Function (ACSF) and Smooth Overlap of Atomic Positions (SOAP). Usage of the package is illustrated for two different applications: formation energy prediction for solids and ionic charge prediction for atoms in organic molecules. The package is freely available under the open-source Apache License 2.0. Program summary Program Title: DScribe Program Files doi: http://dx.doi.org/10.17632/vzrs8n8pk6.1 Licensing provisions: Apache-2.0 Programming language: Python/C/C++ Supplementary material: Supplementary Information as PDF Nature of problem: The application of machine learning for materials science is hindered by the lack of consistent software implementations for feature transformations. These feature transformations, also called descriptors, are a key step in building machine learning models for property prediction in materials science. Solution method: We have developed a library for creating common descriptors used in machine learning applied to materials science. We provide an implementation the following descriptors: Coulomb matrix, Ewald sum matrix, sine matrix, Many-body Tensor Representation (MBTR), Atom-centered Symmetry Functions (ACSF) and Smooth Overlap of Atomic Positions (SOAP). The library has a python interface with computationally intensive routines written in C or C++. The source code, tutorials and documentation are provided online. A continuous integration mechanism is set up to automatically run a series of regression tests and check code coverage when the codebase is updated.nb_NO
dc.language.isoengnb_NO
dc.publisherElseviernb_NO
dc.rightsNavngivelse 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/deed.no*
dc.titleDScribe: Library of descriptors for machine learning in materials sciencenb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.pagenumber12nb_NO
dc.source.volume247nb_NO
dc.source.journalComputer Physics Communicationsnb_NO
dc.identifier.doi10.1016/j.cpc.2019.106949
dc.identifier.cristin1739392
dc.description.localcodeThis is an open access article distributed under the terms of the Creative Commons CC-BY license, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.nb_NO
cristin.unitcode194,66,20,0
cristin.unitnameInstitutt for fysikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Navngivelse 4.0 Internasjonal
Except where otherwise noted, this item's license is described as Navngivelse 4.0 Internasjonal