Vis enkel innførsel

dc.contributor.authorBritz, Hannah
dc.contributor.authorHanke, Nina
dc.contributor.authorVolz, Anke-Katrin
dc.contributor.authorSpigset, Olav
dc.contributor.authorSchwab, Matthias
dc.contributor.authorEissing, Thomas
dc.contributor.authorWendl, Thomas
dc.contributor.authorFrechen, Sebastian
dc.contributor.authorLehr, Thorsten
dc.date.accessioned2020-02-06T07:09:17Z
dc.date.available2020-02-06T07:09:17Z
dc.date.created2019-09-13T14:01:01Z
dc.date.issued2019
dc.identifier.citationCPT: Pharmacometrics and Systems Pharmacology. 2019, 8 (5), 296-307.nb_NO
dc.identifier.issn2163-8306
dc.identifier.urihttp://hdl.handle.net/11250/2639905
dc.description.abstractThis study provides whole‐body physiologically‐based pharmacokinetic models of the strong index cytochrome P450 (CYP)1A2 inhibitor and moderate CYP3A4 inhibitor fluvoxamine and of the sensitive CYP1A2 substrate theophylline. Both models were built and thoroughly evaluated for their application in drug–drug interaction (DDI) prediction in a network of perpetrator and victim drugs, combining them with previously developed models of caffeine (sensitive index CYP1A2 substrate), rifampicin (moderate CYP1A2 inducer), and midazolam (sensitive index CYP3A4 substrate). Simulation of all reported clinical DDI studies for combinations of these five drugs shows that the presented models reliably predict the observed drug concentrations, resulting in seven of eight of the predicted DDI area under the plasma curve (AUC) ratios (AUC during DDI/AUC control) and seven of seven of the predicted DDI peak plasma concentration (Cmax) ratios (Cmax during DDI/Cmax control) within twofold of the observed values. Therefore, the models are considered qualified for DDI prediction. All models are comprehensively documented and publicly available, as tools to support the drug development and clinical research community.nb_NO
dc.language.isoengnb_NO
dc.publisheriley Periodicals, Inc. on behalf of the American Society for Clinical Pharmacology and Therapeutics.nb_NO
dc.rightsNavngivelse-Ikkekommersiell 4.0 Internasjonal*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/deed.no*
dc.titlePhysiologically-based pharmacokinetic models for CYP1A2 drug-drug interaction prediction: A modeling network of fluvoxamine, theophylline, caffeine, rifampicin, and midazolamnb_NO
dc.typeJournal articlenb_NO
dc.typePeer reviewednb_NO
dc.description.versionpublishedVersionnb_NO
dc.source.pagenumber296-307nb_NO
dc.source.volume8nb_NO
dc.source.journalCPT: Pharmacometrics and Systems Pharmacologynb_NO
dc.source.issue5nb_NO
dc.identifier.doi10.1002/psp4.12397
dc.identifier.cristin1724504
dc.description.localcodeThis is an open access article under the terms of the Creative Commons Attribution‐NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.nb_NO
cristin.unitcode194,65,15,0
cristin.unitcode1920,14,0,0
cristin.unitnameInstitutt for klinisk og molekylær medisin
cristin.unitnameLaboratoriemedisinsk klinikk
cristin.ispublishedtrue
cristin.fulltextoriginal
cristin.qualitycode1


Tilhørende fil(er)

Thumbnail

Denne innførselen finnes i følgende samling(er)

Vis enkel innførsel

Navngivelse-Ikkekommersiell 4.0 Internasjonal
Med mindre annet er angitt, så er denne innførselen lisensiert som Navngivelse-Ikkekommersiell 4.0 Internasjonal