• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Rapid 3-D Magnetic Integral Field Computation of Current-Carrying Finite Arc Segments with Rectangular Cross-Section

Maurer, Frederic; Kawkabani, Basile; Nøland, Jonas Kristiansen
Journal article, Peer reviewed
Accepted version
Thumbnail
View/Open
Maurer (450.7Kb)
URI
http://hdl.handle.net/11250/2636340
Date
2020
Metadata
Show full item record
Collections
  • Institutt for elkraftteknikk [1941]
  • Publikasjoner fra CRIStin - NTNU [26591]
Original version
10.1109/TMAG.2019.2952078
Abstract
The computation of three-dimensional (3-D) magnetic fields is a demanding task in the analysis of electrical machines and other electromagnetic devices. In this context, integral field calculation provides a smooth solution, high precision and resolution, ”on-demand”- calculation, and an origin-based formulation of the magnetic field and the magnetic vector potential. However, conventional elliptic methods lead to huge parallelizable computing efforts and significant errors. In this paper, a 3-D generic current-carrying arc segment with rectangular cross-section is studied. A new analytic formulation is proposed to speed up the computation of magnetic fields and reduce the error by more than three orders of magnitude. In addition, the proposed magnetic vector potential expression has similar accuracy as numerical integration. In fact, a significant reduction of the error level has been showcased clearly with respect to existing approaches. The present work is promising for improving the design methodology and optimization of large superconducting dipole magnets or arched end-winding geometries of large electrical machines.
Publisher
Institute of Electrical and Electronics Engineers (IEEE)
Journal
IEEE transactions on magnetics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit