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The computation of three-dimensional (3-D) magnetic fields is a demanding task in the analysis of electrical machines and other
electromagnetic devices. In this context, integral field calculation provides a smooth solution, high precision and resolution, ”on-demand”-
calculation, and an origin-based formulation of the magnetic field and the magnetic vector potential. However, conventional elliptic
methods lead to huge parallelizable computing efforts and significant errors. In this paper, a 3-D generic current-carrying arc segment
with rectangular cross-section is studied. A new analytic formulation is proposed to speed up the computation of magnetic fields and
reduce the error by more than three orders of magnitude. In addition, the proposed magnetic vector potential expression has similar
accuracy as numerical integration. In fact, a significant reduction of the error level has been showcased clearly with respect to existing
approaches. The present work is promising for improving the design methodology and optimization of large superconducting dipole
magnets or arched end-winding geometries of large electrical machines.

Index Terms—Analytical formulation, arch segments, 3-D magnetic fields, integral calculation, end-winding, supra-conductive coils.

I. NOMENCLATURE

The nomenclature this paper is adopted from common
terminology [7], where
• ϕ1, ϕ2, φ = ϕ′ − ϕ, α (defined in eq. (14)) angles [rad],
• r1, r2, r, r′ radial distances [m],
• γ = z′ − z, z1, z2, z, z′ axial distances [m],
• ~H (magnetic field) is the ~H-field in this paper [A/m],
• ~B (magnetic flux density) is ~B-field in this paper [T],
• ~A (magnetic vector potential) is the ~A-field in this paper

[Wb/m],
Fig. 1 defines the quantities and subscripts geometrically. The
integration domain is not mentioned explicitly and ranges from
r = r1 to r = r2 for the integration along the radial component,
from ϕ = ϕ1 to ϕ = ϕ2 for the integration along the tangential
component and from z = z1 and z = z2 for the integration
along the axial component.

The cylindrical coordinates z, r and ϕ are the global
coordinate system, whereas z′, r′ and ϕ′ are used as the source
coordinate system when deriving the integral equations.

II. INTRODUCTION

THE calculation of complex three-dimensional (3-D) ~H-
fields from current-carrying conductors are conventionally

done in the finite element (FE) environment. Arced current-
carrying bodies appear in 3-D geometries such as coils of
electromagnetic devices, winding overhangs (end-windings) of
electrical machines or supra-conductive coils, in particular.
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Recently, analytic calculations experienced a come-back in
several publications related to superconducting shim coil [1] or
related to mutual inductance and force calculation for circular
coils with rectangular cross-section [2]–[4]. Mostly, the integral
method is used in combination with geometry optimisation
problems in coil and winding design areas. Moreover, this
method can also serve as a pre-calculation of the electric
vector potential T0 for magneto-static (also called T0-ψ) or -
dynamic (also called T0-T-ψ) FE problems, for which ψ is the
reduced potential and T the electric vector potential associated
to eddy-currents [5]. Moreover, in the case of large synchronous
generators (spanning from a stator bore diameter of 2.0 to
18.0m), the simulation model can cover up to half of the whole
machine geometry. As a result, an unmanageable mesh size is
needed. In comparison, a 700MB RAM memory is needed for
a complete overhang model of a 12-pole, 4.3m bore diameter
electrical machine modelled using the integral method.

Many numerical-analytic formulations of 3-D ~H-fields were
proposed in the time span from approx. 70’s to 90’s. How-
ever, over time, they were inevitably substituted by the FE
methodology. The main reason lies in their main drawbacks,
i.e., they need of numerical evaluation of elliptic integrals of
the first, second and third kind, which were, in fact, very time
consuming until a breakthrough made in 2009 by Fukushima
[6]. Moreover, floating-point operations are intensive and not
easily parallelizable for a single-point computation. On the
contrary, the FE methods can easily be parallelized and could
also take full advantage of the increasing computing power.
As a result, integral formulation reduced their applicability
over time, which explains the fact that most papers related to
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Fig. 1: Schematic representation of the generalized arch seg-
ment of a current path with rectangular cross-section.

analytic field calculation are more than 35 years old. In fact,
it is nearly a forgotten chapter of magnetic field analysis. As
a result, the hidden potential for significant improvements has
been historically overlooked.

In a series of six publications [7] - [12], Urankar presents
analytic formulations to obtain the ~H-field and ~A-field for
straight and arched conductors with various cross-sections. In
[13] and [14], the authors presents analytic formulae for the ~H-
field of a closed arched current-carrying conductor, which are
identical up to a sign-function to the particular case presented
in [7]. Unfortunately, these publications lack validation of
their formulations. Later, the analytic formulations for the ~H-
field were compared with the results of a volume integral
method (VIM) [15]. The equations generates values that slightly
differs from the ones presented in [7], and with significant
differences to the values obtained by the VIM. This may be
a reason of their rather low use in the scientific community.
In fact, no publications reported any validation of the ~A-field
formulas presented in [7]. The ~A-field has a couple of practical
applications. In the context of coil design (supra-conductive
or not), the ~A-field can be used to obtain the inductance in
a more straightforward way than using the magnetic energy
and a volume integral. In the context of time-evolutive field
simulation, the ~A-field is a key variable to obtain the induced
voltage from which, one can deduce, e.g., the circulating current
in the Roebel bar of an electrical machine. In addition, it can
be used to calculate 3-D eddy currents [16], or more generally

speaking, couple an analytical 3-D winding overhang (or edge-
field) model with a classical 2-D FE model, to make the best
use of the advantages of both methods.

In order to achieve low computational costs in the calcula-
tion, one have to rely on precise and fast algorithms to evaluate
them. Urankar identified this issue and proposed in [17] and
[18] solutions to increase the computational speed. In addition,
Fukushima made a breakthrough in the calculation of elliptic
integral proposed in a series of papers [6], [19]–[24] where
novel approaches and algorithms reduced the computation
time by at least one order of magnitude compared to former
methods developed by Bulirsch or Carlson ( [6], [19]–[24]
uses their foundations). Incorporating this achievement, the
computation time is not anymore the limiting factor to the
practical implementation of analytic formulations. However,
significant numerical discrepancies as shown in [15] are still
an issue, which are the main objective of this paper.

In this paper, a generic problem is showcase to represents a
wide range of applications, as described in from the beginning
of this section. In the present work, improved analytic formulae
for the ~H-field and ~A-field are derived starting from the expres-
sions presented in [7]. The analytic expressions for the ~H-field
and the ~A-field are inherently precise. In addition, they also
provide the ~H-fields’ contribution of each element of a complex
geometry. From [7], this work develops improved expressions
for the ~B-field and the ~A-field for an arched current-carrying
conductor with rectangular cross-section (refer to Fig. 1) as
the analytic formulas developed in [7] appears to have some
integration errors (refer to the errors presented in Table IV,
Section V). To correct them, a novel analytic development of
the complete set of equations has been carried out. These novel
expressions are validated using FE simulations and assessed
against the work of Fontana [15] as a benchmark. The novel
expressions for the ~A-field are compared with a numerical inte-
gration performed with the MATLAB numerical environment.
Practical implementation of these improved formulae make
an extensive use of the elliptic integral calculation algorithms
developed in [6] to [24], which reduces the calculation time by
at least one order of magnitude ( [6] - [24]).

The paper is organized as follows. In Section III, the basic
integrals for the generic problem is presented. Further, the
novel expressions are derived in Section IV. In Section V, the
expressions are evaluated in a generalized case study. Finally,
Section VI concludes the paper and offers a view on future
perspectives and open issues.

III. BASIC INTEGRALS

Fig. 1 shows a schematic representation of an arched
current-carrying conductor with rectangular cross-section
where the nomenclature presented in Section I is used. The
integral equations for the vector potential, ~A(~r), and the mag-
netic flux density, ~B(~r), are obtained from the law of Biot-
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Savart applied to a known constant current density ~J = j~eφ′

over a rectangular cross-section. They are given by

~A( #»r ) =
µ0j

4π

∫
ϕ

∫
r

∫
z

r′~eφ′∣∣ #»r − #»r ′
∣∣dz′dr′dφ (1)

~B( #»r ) =
µ0j

4π

∫
ϕ

∫
r

∫
z

r′~eφ′ ×
(

#»r − #»r ′
)∣∣ #»r − #»r ′

∣∣3 dz′dr′dφ (2)

where j is the known uniform current density expressed in
ampere per square meter, ~eφ′ = − sin(φ)~er + cos(φ)~eϕ is
the unit vector in tangential direction of the local (or source)
cylindrical coordinate system (r′,φ′,z′), the global one being
(r,ϕ,z) ,

∫
φ

the integral over the tangential coordinate φ of the
local (or source) cylindrical coordinate system,

∫
r

∫
z

the surface
integral over the radial and axial coordinates r′ and z′ of the
local (or source) cylindrical coordinate system, #»r the vector
to the point where the potential vector ( ~A-field) respectively
magnetic flux density ( ~B-field) is calculated, #»r ′ is a vector
pointing to a source point located in the volume to be integrated
and defined by [r1,r2]×[ϕ1,ϕ2]×[z1,z2] (refer to fig. 1) and
µ0 is the permeability of the vacuum (4π10−7N/A2). Refer to
section I for the definition of the variables used in this article.

The constant current density hypothesis has been assumed
as it is a common practice for this kind of problems and is
widely used in the literature (refer for example [7]–[10] and
[1], [3], [28]–[32]) covering a wide range of applications from
integral field calculation, to analytic inductance calculations
passing through design optimisation of end-windings or large
superconducting coils. The second reason lies in its intrinsic
simplicity. The hypothesis can easily model any current density
by changing the current passing through each conductor with a
rectangular cross-section and by adjusting adequately the cross-
section and intrinsic current density of each conductor.

IV. NOVEL ANALYTIC EXPRESSIONS

This section derives the novel analytical formulations pro-
posed in this paper. In the introductory part, general expressions
of the ~A-field and the ~B-field are prepared. The following
subsections derives the improved formulations step by step in
detail.

Analytic expression has already been formulated with el-
liptical integrals [7]. In fact, it is possible to obtain a reduced
expression without elliptic integrals, i.e., first integrate over the
angle φ and then over the other variables (r′ and z′). In eq.
(1), denominator |~r − ~r′| is replaced by D(φ), clearly defined
by eq. (9). In fact, D(φ) is also a function of z′ and r′, but
it will not be formulated explicitly to remain consistent with
the notation defined in [7]. Using the nomenclature defined in
Section I and the framework outlined in eqs. (8) to (13), the
analytic derivations are made. Integrating over φ (integration

by substitution) then over r′ and finally over z′, one obtains
finally

Ar =
µ0j

4π

∫
ϕ

∫
r

∫
z

−r′ sin(φ)
D(φ)

dz′dr′dφ

=
µ0j

π

[
a

4r

[
γD(φ) +B2(φ) sinh−1

(
β2(φ)

)]
+

1

12r

[
aγD(φ)− a(a2 − 3b2) sinh−1

(
β2(φ)

)]
− 4b3 tan−1

(
β3(φ)

)
+
(
2γ3 + 6b2γ

)
sinh−1

( a√
b2 + γ2

)]∣∣∣∣∣
r′=r2

r′=r1

∣∣∣∣∣
φ=ϕ2−ϕ

φ=ϕ1−ϕ

∣∣∣∣∣
z′=z2

z′=z1

(3)

where a = r′− r cos(φ), b = r sin(φ) and φ are spanning over
[ϕ1−ϕ,ϕ2−ϕ]. Note that −ϕ will be left out in the following
equations to formulate ”lighter” equations, where it will be
understood as implicit. The formula derived in eq. (3) is verified
using an analytic integration software (such as Mathematica)
and will therefore be assumed as a premise in the following
sections.

The formulation of Aϕ will be expressed hereafter without
the factor µ0j/4π (compressed formulation). In the derivation
of Aϕ, the integration over the variables r′ and z′ is straightfor-
ward and the obtained expression has already been reported [7].
and they are recalled hereafter. The expression for the tangential
component of the ~A-field presented [7] contained errors and it
was not possible to correct them. On the contrary, as stated
in [7], there is no need for a double integration by parts. The
novel expression can be derived using a single integration by
parts obtaining the novel expression for the ~A-field. Recalling
eq. (3.b) of [7] leads to

Aϕ =
1

2

∫ ϕ2

ϕ1

dφ
(
γD(φ) + 2γr cos(φ) sinh−1 β1(φ)

+
(
r′2 − r2 cos(2φ)

)
sinh−1 β2(φ)

− r2 sin(2φ) tan−1 β3(φ)
)
cos(φ). (4)

The formulation of the ~B-field will also be normalized hereafter
by µ0j/4π. In this context, the same errors in the formulas are
considered and a single integration by parts can be made. The
radial component can also be computed without any elliptic
integrals. The proposed novel expression can be derived using
a single integration by parts. It follows accordingly that the
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expression to be integrated yields

Hr =

∫ ϕ2

ϕ1

dφ
[
cos(φ)D(φ) + r cos(φ)2 sinh−1 β1(φ)

]
(5)

Hϕ =

∫ ϕ2

ϕ1

dφ

∫ r2

r1

dr′
∫ z2

z1

dz′
−γr′ sin(φ)
D(φ)3

(6)

Hz =

∫ ϕ2

ϕ1

dφ
[
γ sinh−1 β1(φ)− r cos(φ) sinh−1 β2(φ) (7)

− r sin(φ) tan−1 β3(φ)
]

where the nomenclature and variables (namely B,D,G, β1, β2
and β3) defined in [7] and the following variables have been
partially utilized in Section I.

B2(φ) = r2 + r′2 − 2rr′ cos(φ) (8)

D2(φ) = γ2 +B2(φ) (9)

G2(φ) = γ2 + r2 sin(φ) (10)
β1(φ) = (r′ − r cos(φ))/G(φ) (11)
β2(φ) = γ/B(φ) (12)
β3(φ) = γ(r′ − r cos(φ))/[r sin(φ)D(φ)] (13)

where γ have been defined in Section I. The integrals trans-
formed along the tangential coordinate into elliptic integrals
using the same angle transformation as in [7], yields

φ = π − 2α. (14)

The elliptic integral coefficients are given by

k2 =
4rr′

γ2 + (r + r′)2
(15)

a2 = γ2 + (r + r′)2 (16)

n2 =
4rr′

(r + r′)2
. (17)

Using these constants, the angle transformation will derive the
following expressions

B2(α) = r2 + r′2 − 2rr′ cos(φ) (18)

= (r + r′)2(1− n2 sin(α)2)
D2(α) = γ2 +B2(φ) = a2(1− k2 sin(α)2). (19)

In dealing with G(φ), the expression expressed in terms of
1/G(α)2 yields

G−2(α) =
1

2
√
γ2 + r2

( 1

(
√
γ2 + r2 − r)(1− n21 sin(α)2)

(20)

+
1

(
√
γ2 + r2 + r)(1− n22 sin(α)2)

)

with

n21 =
2r

r −
√
γ2 + r2

(21)

n22 =
2r

r +
√
γ2 + r2

. (22)

Finally, integration over the angle φ achieves the improved
analytic expressions.

It has been decided to integrate the expressions only once
per part, which is the main difference with the expressions
presented in [7]. To obtain compact expressions, one uses
extensively the formulas for the sine respectively cosine of the
double of the argument. For Ar and Hϕ, the improved solutions
does not contain any elliptic integrals due to a first integration
over φ followed by integration over r′ and then z′. To obtain
expressions without any elliptic integrals, one have to to use
integration by substitution, substituting −2rr′ cos(φ) by x.

In the following subsections, improved formulations of the
angular ~A-field (Aϕ), the angular ~H-field (Hϕ), the radial ~H-
field (Hr) and the axial ~H-field (Hz) will be derived. Finally,
the numerical computation algorithms will be summarised.

A. Improved formulation of the angular vector potential Aϕ
Eq. (4) is divided into four integrals, which will be inte-

grated using a single integration by parts, yielding

I1 =
1

2

∫ ϕ2

ϕ1

dφ γD(φ) cos(φ) (23)

I2 =

∫ ϕ2

ϕ1

dφ γr cos(φ)2 sinh−1 β1(φ) (24)

I3 =
1

2

∫ ϕ2

ϕ1

dφ
(
r′2 − r2 cos(2φ)

)
sinh−1 β2(φ) cos(φ)

(25)

I4 = −1

2

∫ ϕ2

ϕ1

dφ r2 sin(2φ) tan−1 β3(φ)) cos(φ), (26)

where
Aϕ = I1 + I2 + I3 + I4. (27)

1) Integral I1 of Aϕ
The integral I1 is transformed into an elliptical integral and

solved to obtain

I1 =
1

2

∫ ϕ2

ϕ1

dφ γD(φ) cos(φ)

=γa

∫ α2

α1

dα
(
1− 2 sin(α)2

)√
1− k2 sin(α)2

=γa
(
E(α, k2) + 2γa

(1
3

( 1

k2
− 1
)
F (α, k2)

+
1

3

(
2− 1

k2
)
E(α, k2)

− 1

3
sin(α) cos(α)

√
1− k2 sin(α2)

))∣∣∣∣∣
α=α2

α=α1

(28)
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where F (α, k) is the first order elliptic integral and E(α, k) is
the second order elliptic integral, k is given by eq. (15) and a
is defined in eq. (16).

2) Integral I2 of Aϕ
Applying a similar transformation for the integral I2 yields

I2 =

∫ ϕ2

ϕ1

dφγr cos(φ)2 sinh−1
(
β1(φ)

)
=

1

2
γr

∫ ϕ2

ϕ1

dφ sinh−1
(
β1(φ)

)
+

1

2
γr

∫ ϕ2

ϕ1

dφ cos(2φ) sinh−1
(
β1(φ)

)
= I2a + I2b. (29)

The first integral (I2a) will be solved numerically, as no analytic
expression can be found for it. For the second part, integration
by parts leads to

I2b =
1

2
γr

∫ ϕ2

ϕ1

dφ cos(2φ) sinh−1
(
β1(φ)

)
=
1

4
γr sin(2φ) sinh−1

(
β1(φ)

)∣∣∣∣∣
φ=ϕ2−ϕ

φ=ϕ1−ϕ

− 1

4
γr

∫ ϕ2

ϕ1

dφ sin(2φ)
[r sin(φ)
D(φ)

− r2 cos(φ) sin(φ)r
′ − r cos(φ)2 sin(φ)

G(φ)D(φ)

]
= I2b1 + I2b2. (30)

To further simplify, I2b2 is divided into two parts

I2b2,1 = −1

4
γr

∫ ϕ2

ϕ1

dφ sin(2φ)
r sin(φ)

D(φ)

=
1

a
γr2

∫ α2

α1

dα
sin(α)2 cos(α)2(1− 2 sin(α)2)√

1− k2 sin(α2)

=
1

a
γr2

∫ α2

α1

dα
α0 + α2 sin(α)

2 + α4 sin(α)
4√

1− k2 sin(α2)

+
α6 sin(α)

6√
1− k2 sin(α2)

(31)

and

I2b2,2 =
1

4
γr3

∫ ϕ2

ϕ1

dφ sin(2φ)
cos(φ) sin(φ)r′

G(φ)D(φ)

− r cos(φ)2 sin(φ)

G(φ)D(φ)

=
1

2
γr3

∫ ϕ2

ϕ1

dφ
cos(φ)2 sin(φ)2r′ − r cos(φ)3 sin(φ)2

G(φ)D(φ)

= − 1

2a
γr3

∫ α2

α1

dα
α0 + α2 sin(α)

2 + α4 sin(α)
4

G(α)
√

1− k2 sin(α2)

+
α6 sin(α)

6 + α8 sin(α)
8 + α10 sin(α)

10

G(α)
√
1− k2 sin(α2)

. (32)

The final results for the integrals of eqs. (31) and (32) can be
found using [33].

3) Integral I3 of Aϕ
The third integral will be decomposed in two parts

I3b1 =
1

2
r′2
∫ ϕ2

ϕ1

dφ cos(φ) sinh−1
(
β2(φ)

)
I3b2 = −1

2
r2
∫ ϕ2

ϕ1

dφ cos(2φ) cos(φ) sinh−1
(
β2(φ)

)
.

(33)

Further, integration by parts yields

I3b1 =
1

2
r′2
∫ ϕ2

ϕ1

dφ cos(φ) sinh−1
(
β2(φ)

)
=

1

2
r′2 sin(φ) sinh−1

(
β2(φ)

)∣∣∣φ=ϕ2−ϕ

φ=ϕ1−ϕ

+
1

2
r′3r

∫ ϕ2

ϕ1

dφ
sin(φ)2

B2(φ)D(φ)
(34)

for I3b1. This integral can be transformed into an elliptic
integral

I3b1 = −r′3r
∫ ϕ2

ϕ1

dα
4 sin(α)2(1− sin(α)2)

B2(α)D(α)

= −r′3r
∫ ϕ2

ϕ1

dα
4 sin(α)2 − 4 sin(α)4

B2(α)D(α)
. (35)

Applying the same methodology for the second integral I3b2,
one obtains

I3b2 = −1

2
r2
∫ ϕ2

ϕ1

dφ cos(2φ) cos(φ) sinh−1
(
β2(φ)

)
= −1

2
r2
∫ ϕ2

ϕ1

dφ (1− 2 sin(φ)2) cos(φ) sinh−1
(
β2(φ)

)
= I3b21 + I3b22. (36)

For the first part of the integral (I3b21), please refer to the
treatment of integral I3b1. For the second part, integration by
parts leads to

I3b22 = r2
∫ ϕ2

ϕ1

dφ sin(φ)2 cos(φ) sinh−1
(
β2(φ)

)
=
r2

3
sin(φ)3 sinh−1

(
β2(φ)

)∣∣∣φ=ϕ2−ϕ

φ=ϕ1−ϕ

−r
3r′γ

3

∫ ϕ2

ϕ1

dφ
sin(φ)4

B2(φ)D(φ)︸ ︷︷ ︸
X

. (37)
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The final integral X of eq. (37) can be expressed in form of
elliptic integrals

X = −r
3r′γ

3

∫ ϕ2

ϕ1

dφ
sin(φ)4

B2(φ)D(φ)

=
2r3r′γ

3a

∫ α2

α1

dα
(4 sin(α)2 − 4 sin(α)4)4

B2(α)
√
1− k2 sin(α)2

=
2r3r′γ44

3a

∫ α2

α1

dα
α8 sin(α)

8 + α10 sin(α)
10

B2(α)
√
1− k2 sin(α)2

+
α12 sin(α)

12 + α14 sin(α)
14 + α16 sin(α)

16

B2(α)
√

1− k2 sin(α)2
(38)

which can be solved using the formulas provided in [33].
4) Integral I4 of Aϕ

For I4, integration by parts yields

I4 =− r2
∫ ϕ2

ϕ1

dφ sin(φ) cos(φ)2 tan−1
(
β3(φ)

)
= r2

1

3
cos(φ)3 tan−1

(
β3(φ)

)∣∣∣φ=ϕ2−ϕ

φ=ϕ1−ϕ

+ r2
1

3

∫ ϕ2

ϕ1

dφ cos(φ)3
[γr(r − r′ cos(φ))

D(φ)B2(φ)

+
γr cos(φ)(r cos(φ)− r′)

D(φ)G2(φ)

]
. (39)

The following integrals can be defined

I41 =
r2

3

∫ ϕ2

ϕ1

dφ
β3 cos(φ)

3 + β4 cos(φ)
4

D(φ)B2(φ)
(40)

I42 =
r2

3

∫ ϕ2

ϕ1

dφ
β′4 cos(φ)

4 + β′5 cos(φ)
5

D(φ)G2(φ)
. (41)

They can be transformed into elliptic integrals using transfor-
mation cos(φ) = −(1− 2 sin(α)2), yielding

I41 = −2r2

3

∫ α2

α1

dα
α0 + α2 sin(α)

2 + α4 sin(α)
4

D(α)B2(α)

+
α6 sin(α)

6 + α8 sin(α)
8

D(α)B2(α)
(42)

I42 = −2r2

3

∫ α2

α1

dα
α0 + α2 sin(α)

2 + α4 sin(α)
4

D(α)G2(α)

+
α6 sin(α)

6 + α8 sin(α)
8 + α10 sin(α)

10

D(α)G2(α)
. (43)

B. Improved formulation of radial magnetic field (Hr)

Starting with the expression for Hr leads to

Hr = Hr1 +Hr2 (44)

Hr1 =

∫ ϕ2

ϕ1

dφ cos(φ)D(φ) (45)

Hr2 =

∫ ϕ2

ϕ1

dφ r cos(φ)2 sinh−1
(
β1(φ)

)
. (46)

The integration of the expression for Hr1 is already done in the
expression I1 for Aφ. For the integration of Hr2, it is similar
to the integration of I2 for Aφ.

C. Improved formulation of angular magnetic field (Hϕ)

The integration for Hϕ is done in a similar way as for Ar.
Integrating first over φ (integration by substitution), then over
z′ and finally over r′, leads to

Hϕ =

∫ ϕ2

ϕ1

dφ

∫ r2

r1

dr′
∫ z2

z1

dz′
−γr′ sin(φ)
D(φ)3

=
1

r

∫ r2

r1

dr′
∫ z2

z1

dz′
γ

D(φ)

∣∣∣∣∣
φ=ϕ2−ϕ

φ=ϕ1−ϕ

=
1

r

∫ r2

r1

dr′D(φ)

∣∣∣∣∣
φ=ϕ2−ϕ

φ=ϕ1−ϕ

∣∣∣∣∣
z′=z2

z′=z1

=
1

r

(
(γ2 + r2 sin(φ)2) arcsinh

(
r′ − r cos(φ)√
γ2 + r2 sin(φ)2

)

+
1

2
(r′ − r cos(φ))D(φ)

)∣∣∣∣∣
r′=r2

r′=r1

∣∣∣∣∣
φ=ϕ2−ϕ

φ=ϕ1−ϕ

∣∣∣∣∣
z′=z2

z′=z1

. (47)

D. Improved formulation of axial magnetic field (Hz)

For Hz , the following integrals need to be calculated

Hz = Hz1 +Hz2 +Hz3 (48)

Hz1 =

∫ ϕ2

ϕ1

dφ γ sinh−1
(
β1(φ)

)
(49)

Hz2 =

∫ ϕ2

ϕ1

dφ − r cos(φ) sinh−1
(
β2(φ)

)
(50)

Hz3 =

∫ ϕ2

ϕ1

dφ − r sin(φ) tan−1
(
β3(φ)

)
. (51)

As the first integral (Hz1) has no analytic expression, it will
be evaluated numerically. For Hz2, using integration by parts
leads to

Hz2 =

∫ ϕ2

ϕ1

dφ − r cos(φ) sinh−1
(
β2(φ)

)
=− r sin(φ) sinh−1

(
β2(φ)

)∣∣∣φ=ϕ2−ϕ

φ=ϕ1−ϕ

−r2r′γ
∫ ϕ2

ϕ1

dφ
sin(φ)

B2(φ)D(φ)︸ ︷︷ ︸
Y

. (52)
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The remaining integral Y of eq. (52) will be transformed into
an elliptic integral

Y = −r2r′γ
∫ ϕ2

ϕ1

dφ
sin(φ)

B2(φ)D(φ)

=
8γr2r′

(r + r′)2a

∫ α2

α1

dα
sin(α)2 − sin(α)4

(1− n2 sin(α)2)
√
1− k2 sin(α)2

.

(53)

These elliptic integrals can be solved using the formulas of
[33]. Finally, for Hz3

Hz3 =

∫ ϕ2

ϕ1

dφ − r sin(φ) tan−1
(
β3(φ)

)
= r cos(φ) tan−1

(
β3(φ)

)∣∣∣φ=ϕ2−ϕ

φ=ϕ1−ϕ

+ γr2
∫ ϕ2

ϕ1

dφ cos(φ)
[r − r′ cos(φ)
D(φ)B2(φ)

+
cos(φ)(r cos(φ)− r′)

D(φ)G2(φ)

]
. (54)

The solution can be separated into three parts where

Hz3 = r cos(φ) tan−1
(
β3(φ)

)∣∣∣φ=ϕ2−ϕ

φ=ϕ1−ϕ︸ ︷︷ ︸
Hz31

+Hz32 +Hz33

The integral parts are transformed into elliptic integrals, yield-
ing

Hz32 = γr2
∫ ϕ2

ϕ1

dφ cos(φ)
r − r′ cos(φ)
D(φ)B2(φ)

(55)

Hz33 = γr2
∫ ϕ2

ϕ1

dφ cos(φ)
cos(φ)(r cos(φ)− r′)

D(φ)G2(φ)
. (56)

The solution of Hz32 yields

Hz32 =
2r2γ

a(r + r′)2

∫ α2

α1

dα(1− 2 sin(α)2)

r + r′(1− 2 sin(α)2)

(1− n2 sin(α)2)
√

1− k2 sin(α)2

=
2r2γ

a(r + r′)2

∫ α2

α1

dα
α0 + α2 sin(α)

2 + α4 sin(α)
4

(1− n2 sin(α)2)
√
1− k2 sin(α)2

.

(57)

In fact, these elliptic integrals can be solved using the formu-
las of [33]. Regarding Hz33, the transformation into elliptic
integrals leads to

Hz33 = −2r2γ

a

∫ α2

α1

dα(1− 2 sin(α)2)2
r(1− 2 sin(α)2) + r′

G2(α)
√

1− k2 sin(α)2

= −2r2γ

a

∫ α2

α1

dα
α0 + α2 sin(α)

2 + α4 sin(α)
4

G2(α)
√

1− k2 sin(α)2

+
α6 sin(α)

6

G2(α)
√
1− k2 sin(α)2

. (58)

Accordingly, these elliptic integrals can also be solved from
known methodology [33].

E. Numerical computation of the novel expressions

The numerical evaluation of the novel expression is based
on the numerical computational algorithms developed by
Fukushima to compute the Jacobi-elliptic functions. Table I
gives an overview of the practical computation algorithms used
in this paper.

TABLE I: Overview of the used algorithms to compute
the elliptic integrals and Jacobi-elliptic functions in the
developed expressions.

Parameter names (refs.) References Equations (this paper)
E(m)a,E(φ,m)b [6], [20] (28),(31)
F (m), F (m,φ)c [19], [21], [22] (28),(31)
sn(u), cn(u), dn(u)d [6] (31),(32),(35),(38),

(42),(43),(53),(57),(58)
Π(m,n2),Π(φ,m, n2)e [23], [24] (31),(32),(35),(38),

(42),(43),(53),(57),(58)

am represents the elliptic modulus or parameter, where E is the
complete, respectively incomplete elliptic integral of the first kind.

bφ represents the amplitude in the jargon of elliptic functions and
corresponds to α used in this paper, where φ was applied to stay consistent
with the agreed notation in the field of elliptic functions.

cF is the complete, respectively incomplete elliptic integral of the second
kind.

dsn, cn and dn depicts the Jacobi elliptic functions.
en represents the characteristic where Π is the complete, respectively

incomplete elliptic integral of the third kind.

V. VALIDATION OF THE NOVEL FORMULATIONS

A suitable TEAM-problem was not identified for a coil
geometry in air with relevant benchmark values for the ~H-
field and or ~A-field. As a consequence, this paper follows a
similar approach, as presented in [35]. The validation of the
novel equations is carried out in two separate validation studies,
i.e.,

1) the magnetic field ( ~H-field) and
2) the magnetic vector potential ( ~A-field).

In all the cases where the results are assessed against 3-D FE
calculations where the normalized relative difference

(Error factor) =
∣∣∣ (Analytic)− (3-D FE)

(3-D FE)

∣∣∣, (59)

is utilized as a performance measure. The 3-D FE simulations
have been performed using an A-V formulation with a tetra-
hedron mesh of the second-order (in terms of the ~H-field).
We also performed comparative simulation using an H-φ for-
mulation with a second-order tetrahedron ~H-field mesh, which
showed no significant discrepancy against the A-V formulation.
We, therefore, concluded that the choice of the formulation
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has no significant impact on the precision of the numerical
results. The results displayed later on are based on a A-V
formulation simulation, which are obtained with a converging
solution. The mesh density is incrementally increased until the
final value is settled for the 5 to 7 digits precision, whereas each
simulation converged using the ”classical” minimum residual
energy criterion (i.e., Gibbs free energy). Note that the impact
of edge or node elements were not significant. For the ~B-field, it
has been verified that the 3-D FE solution is locally divergence-
free, whereas the analytical solution is divergence-free per
construction and the Laplacian of the ~A-field is constant [14].
As a result, the first validation criteria for the ~H-field and the
~A-field are fulfilled. This as a necessary condition, but not an
entirely conclusive condition.

In Section V-A, the proposed ~H-field calculation is com-
pared with 3-D FE simulations. In addition, Section V-B com-
pares performance of the proposed formulation with the results
of Fontana ( [15]). The ~A-field is validated in Section V-C,
where the novel formulation for Aφ is compared to a numerical
integration approach along the dφ-direction. Moreover, the
formula for Ar was validated using a symbolic calculation
software (in the Mathematica environment) and further cross-
checked with manual integration. In fact, no 3-D FE calculation
was performed due to the lack of computational power available
in the laboratory.

A. Validation of the ~H-field using 3-D FE simulations

· ex

ey

ez

xl

yl

rl

Straight segment Arched 
segment

Fig. 2: Schematic representation of the round edges rectangular
coil composed of 4 straight segments and 4 arched segments
(refer to Fig. 1), the corresponding numerical values are given
in Table II.

TABLE II: Specification of the simplified winding overhang
(coil) geometry of a large electrical machine investigated.

Parameter Description Value Unit
yl Length of coil rectangle 2800 mm
xl Width of coil rectangle 1550 mm
rl Edge radius of coil rectangle 150 mm
y Height of coil cross-section 25 mm
x Width of coil cross-section 10 mm
Ic Total coil current 1 MA
Bc Center-of-coil flux density 0.5 T

This subsection presents a case study of a large generic coil
composed of four-arched current-carrying conductors (refer to
Fig. 1) corresponding to the four corners of the coil represented
in Fig. 2 and four straight conductors with analytic expression
for the ~H-field reported in [7]. The segments of the coil geom-
etry represents elements of a simplified end-winding geometry
of a large electrical machine, without any claim to represent a
particular practical application of this geometry. The geometry
considered is shown in Fig. 2 with specifications provided in
Table II. Targeted validation paths are chosen and they are
provided in the appendix Section VII-B (Fig. 7).
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B
z
 along Diag (FE)

Fig. 3: ~B-field (analytic calculation) along different paths,
defined in Section VII-B and shown in Fig. 7 for the geometry
defined in Fig. 2 using the numerical values given in Table II.

Analytical ~B-field results (in Tesla) are shown in Fig. 3
along a couple of specified the paths. The field curves are
assessed against 3-D FE results, which are in good agreement.
Note that the ~H-field and ~B-field are related via the µ0-constant
in the given case. More evaluation paths are covered in Section
VII-B.

The accuracy of the results in Fig. 3 are evaluated in Fig. 4
with respect to the final 3-D FE results. The absolute difference
is shown to be very small over all of the evaluated paths,
fluctuating between 10−6 T and 10−12 T, depending on the
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Fig. 4: Relative difference between the analytic and 3D-FE
expressions and 3D-FE along different paths, defined in section
-B and shown in Fig. 7 for the geometry defined in Fig. 2 using
the numerical values given in Table II.

chosen path. The overall agreement demonstrates the significant
precision of the proposed novel formulations. In general, it
is not possible to draw conclusions from the error variation
since the mesh density is not constant over the 3-D FE volume.
However, it is worth noting that the error is generally reduced
by at least one order of magnitude for Bx and By along Diag
compared to Bz along Diag. The error is quasi-identical for Bz
along Oz and Diag over a path length spanning from 0.2 to 1.8
m. The magnitude of the ~B-field lies between 0.05T and 0.6T
depending on the considered path. In general, the overall mean
values highlighted in Table III support the already mentioned
observations.

TABLE III: Comparison between the rectangular approximation
against 3-D FE (rectangular cross-section) along different paths,
defined in Section VII-B and shown in Fig. 7 for the geometry
defined in Fig. 2 using the numerical values given in Table II.

Path Rectangular approximation (T)
mean value of the difference

Bz along Oz 7.8334e-08
Bx along Diag 1.7510e-09
By along Diag 6.9299e-10
Bz along Diag 5.4944e-08
Bx along OxOz+ 1.4778e-09
Bz along OxOz+ 7.9363e-08
Bz along OyOx- 7.9247e-08

Two normalized errors could be highlighted. Expressed in
percentage, the mean value1 becomes 3.0622e-05% for Bz

1Only two results could be presented as a percentage error since it converges
toward 100% as the ~B-field approaches toward zero.

along Oz and 5.4214e-05% for Bz along Diag. The normal-
ized errors are very small, which demonstrates the excellent
accuracy of the novel formulations for a scalable problem.

B. Benchmark of the ~H-field formulaes with Fontana ( [15])

From a previous study [15], the analytic expressions of [7]
was compared with a numerical quadrature. However, this paper
provides both novel expressions that are also assessed against
3-D FE results.

For the sake of fairness with respect to earlier studies,
this case study selects 23 conventionally defined observation
points (based on [15]) where the magnitude of the ~H-field
is computed. These points are shown in Fig. 5, and further
specified in Table IV. In addition to the magnitude, the three
components are also given in this table for both the 3-D FE
results and the formulas proposed in this paper.
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B3

B2

B4

C1 C2
O

F1 F2

F3 F4

H1
H2

G1 G2

I1 I2

Fig. 5: Schematic representation (plane view of a cut) of the
toroidal coil (highlighted in red) used in [15] and definition of
the points Ai to Ii.

The ~H-field magnitude is expected to be the same for all
points Ai, Bi, Ci, Fi, Gi, Hi, Ii by the construction of the
same geometry. In general, this is the case for both ”Fontana,
Urankar” and the analytic developments presented in this work
for all points. However, the point Fi and Gi are located at a
line singularity (bold values in Table IV). As a result, the error
is significantly higher for these points due to their location. It
is advised that the integral that computes these points should
be carefully modified to take the singularity into account.



0018-9464 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMAG.2019.2952078, IEEE
Transactions on Magnetics

IEEE TRANSACTIONS ON MAGNETICS 10
TABLE IV: Comparison of [15], 3-D FE computation and the proposed formulas (magnitude of ~H-field expressed in A/m,
results with 5 to 7 significant digits). Numerical values below 1e-15 have been written as 0.0, bolded values correspond to a line
singularity.

|H̃| Hx Hy Hz

Eval. Fontana, Fontana, [A/m] [A/m] [A/m]
point Fin. Vol. 39078 Urankar 3-D FE This work 3-D FE This work 3-D FE This work 3-D FE This work
A1 0.0147455 0.0147479 0.0147492 0.0147493 0.0138026 0.0138026 0.0 0.0 0.0051990 0.0051990
A2 0.0147434 0.0147479 0.0147492 0.0147493 -0.0138026 -0.0138026 0.0 0.0 0.0051990 0.0051990
A3 0.0147433 0.0147479 0.0147492 0.0147493 -0.0138026 -0.0138026 0.0 0.0 0.0051990 0.0051990
A4 0.0147453 0.0147479 0.0147492 0.0147493 0.0138026 0.0138026 0.0 0.0 0.0051990 0.0051990
B1 0.227051 0.227077 0.227066 0.227066 0.095322 0.095322 0.0 0.0 0.206089 0.206089
B2 0.227041 0.227077 0.227066 0.227066 -0.095322 -0.095322 0.0 0.0 0.206089 0.206089
B3 0.227033 0.227077 0.227066 0.227066 -0.095322 -0.095322 0.0 0.0 0.206089 0.206089
B4 0.227038 0.227077 0.227066 0.227066 0.095322 0.095322 0.0 0.0 0.206089 0.206089
C1 1.94055 1.9387 1.939178 1.939178 0.0 0.0 0.0 0.0 1.939178 1.939178
C2 1.94027 1.9387 1.939178 1.939178 0.0 0.0 0.0 0.0 1.939178 1.939178
D 0.0294561 0.0294932 0.0294781 0.0294781 0.0 0.0 0.0 0.0 -0.0294781 -0.0294781
E 0.257634 0.257639 0.257642 0.257642 0.0 0.0 0.0 0.0 0.257642 0.257642
F1 2.50891 2.56669 2.55683 2.56536 1.82292 1.83486 0.0 0.0 1.79286 1.79286
F2 2.51103 2.56381 2.55683 2.56536 -1.82292 -1.83486 0.0 0.0 1.79286 1.79286
F3 2.50699 2.56669 2.55683 2.56536 -1.82292 -1.83486 0.0 0.0 1.79286 1.79286
F4 2.50811 2.56381 2.55683 2.56536 1.82292 1.83486 0.0 0.0 1.79286 1.79286
G1 1.77891 1.82984 1.81714 1.82852 1.72966 1.74162 0.0 0.0 -0.55702 -0.55702
G2 1.77643 1.82685 1.81714 1.82852 -1.72966 -1.74162 0.0 0.0 -0.55702 -0.55702
H1 1.29946 1.34769 1.36403 1.36403 0.0 0.0 0.0 0.0 -1.36403 -1.36403
H2 1.29565 1.34769 1.36403 1.36403 0.0 0.0 0.0 0.0 -1.36403 -1.36403
I1 2.85931 2.94681 2.93738 2.93738 0.0 0.0 0.0 0.0 2.93738 2.93738
I2 2.85431 2.94681 2.93738 2.93738 0.0 0.0 0.0 0.0 2.93738 2.93738
O 0.000000 0.000000 1.472740 1.472740 0.0 0.0 0.0 0.0 1.472740 1.472740

It should be highlighted that for all the observation points,
the difference between our results and 3-D FE results is sig-
nificantly lower than what is predicted by Fontana, confirming
the excellent precision of the developed formulations.

The values generated from the finite volume method
(”Fontana Fin. Vol.”) and numerical evaluation of Urankar’s
equation (”Fontana, Urankar”) have the biggest difference to the
3-D FE simulation. The magnitude is different for every point in
the finite volume calculation, while there are 2 series of distinct
values in the numerical evaluation of Urankar’s equation. An
increased number of volume elements will make the numerical
values to reach the values of the 3-D FE simulation. One
possible explanation is the fact that the numerical integration
of Urankar’s equation is not done with a sufficiently small
integration steps, so that a relevant error is still present.

For point O, there seems to be a problem with the ~H-
field computed using ”Fontana Fin. Vol. 39078” or ”Fontana,
Urankar” as they both show an amplitude of 0 [A/m], which
is physically impossible, as the ~H-field must have a non-zero
component along the z-axis at the origin (as stated in [7]).

The last six columns of Table IV present a more detailed
comparison between ”This Work” and ”3-D FE”. The goal is
to show which component of the ~H-field is impacted by the
line singularity. It is perceived that the x-component (or r-
component in cylindrical coordinates) is the only component
impacted by this singularity. As a result, possible corrections

are to be considered for this component only.
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Fig. 6: Normalized relative difference of the ~H-field for the
points Ai to Ii (except line singularities) different computation
methods compared to 3D-FE. The points Ai to Ii are defined in
Fig. 5, results with 5 to 7 significant digits. The error of ”This
work” is equal to or less than 10−6 for points B1, B2, B3, C1,
C2, D, E, H1, H2, I1 and I2 in this figure.

Fig. 6 presents graphically the results of the first four
columns of Table IV. The equations developed in this work
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have no difference compared to the final FE values (with 5 to
7 significant digits), which demonstrates the significant gain in
numerical precision of this analytical development. The error
of the actual formulation lies between 0.1 and 5% depending
on the considered point, while it is lower than 6.8e-4% for the
novel formulation. It is perceived that the upper expectation in
improvement is as high as four orders of magnitude (H1 and
H2).

C. Validation of the ~A-field using numerical integration

Finally, the analytic expressions for the ~A-field in the tan-
gential direction have been compared the results of numerical
integration carried out in the MATLAB environment. Table
V reveals a relative error of 4.625ε, where ε is the double-
precision machine tolerance (i.e., 2.220446049250313e-16).
Consequently, this finding confirms the effectiveness of the
improved analytic expressions.

In fact, a contribution that numerically integrated Urankars’
expressions [7] reported significant discrepancies with the nu-
merical integration in this paper, as well as the novel ana-
lytic expressions. Unfortunately, it was not possible to follow
the complete development of the benchmark expressions [7].
Therefore, it is not possible to detect possible errors in the
benchmark expressions or possible errors in our the interpreta-
tion of the expressions [7].

TABLE V: Sample assessment of Aϕ from finite arc seg-
ment using eq. (4) with an observer located at (r, ϕ, z) =
(1.345 67m, 0.457 819 410 485 735 rad, 0.123m) with an inte-
gration domain ranging from φ1 = 0.179175501009738 to
φ2 = 0.788860896633405, from r1 = 0.5 to r2 = 1.5 and
from z1 = 0 to z2 = 1.0.

Value
Analytical evaluation 0.152 519 106 701 134 Wb/m
Numerical integration 0.152 519 106 701 135 Wb/m
Deviation < 5ε

VI. CONCLUSION

This paper demonstrates the utility of an improved 3-D
integral magnetic field computation method of the ~H-field and
the ~A-field. In our case study, we show the superiority of the
proposed analytic formulations in comparison with alternative
approaches ( [7] - [12]). Moreover, it has been validated and
assessed in a commercial 3-D FE environment. As a general
rule of thumb, it must be highlighted that the novel expressions
for the ~H-field reduce the error on average by more than
three orders of magnitude compared to the existing literature
(Fig. 6). In addition, the expressions for the ~A-field have
been validated against numerical integration, and they present
an error below ten times machine precision. The numerical

speed-up is achieved utilizing the algorithms developed by
Fukushima.

Combining both advancements, i.e., the novel equations and
Fukushima’s algorithms, this work enables enhanced formula-
tions of the analytic equations. In fact, they deploy their biggest
advantage compared to the 3-D FE method, namely the fact that
the individual contributions of each current-carrying segment
can be easily identified. As a result, this work provides huge
advantages in dealing with complex electromagnetic optimiza-
tion problems. Moreover, the ”on-demand” calculation provides
the field quantities only at the needed locations, thus reducing
the computational needs in obtaining any given result.

In a future research effort, the contribution of each current-
carrying segment will be further investigated and the work
will take into account the numerical error induced by the
singularities.

VII. APPENDIX

A. Case of r = 0

In the case r = 0 the formulas for the ~A-field and the
~H-field gets

Ar =

∫ ϕ2

ϕ1

dφ

∫ r2

r1

dr′
∫ z2

z1

dz′
−r′ sin(φ)

(γ2 + r′2)1/2

= cos(φ)

∫ z2

z1

dz′
√
γ2 + r′2

=
1

2
cos(φ)

(
r′2 arcsinh(

γ

|r′|
) + γ

√
γ2 + r′2

) ∣∣∣∣∣
r′=r2

r′=r1

∣∣∣∣∣
φ=ϕ2−ϕ

φ=ϕ1−ϕ

∣∣∣∣∣
z′=z2

z′=z1

(60)

Aϕ =

∫ ϕ2

ϕ1

dφ

∫ r2

r1

dr′
∫ z2

z1

dz′
r′ cos(φ)

(γ2 + r′2)1/2

= sin(φ)

∫ z2

z1

dz′
√
γ2 + r′2

=
1

2
sin(φ)

(
r′2 arcsinh(

γ

|r′|
) + γ

√
γ2 + r′2

) ∣∣∣∣∣
r′=r2

r′=r1

∣∣∣∣∣
φ=ϕ2−ϕ

φ=ϕ1−ϕ

∣∣∣∣∣
z′=z2

z′=z1

(61)

Hr =

∫ ϕ2

ϕ1

dφ

∫ r2

r1

dr′
∫ z2

z1

dz′
−γr′ cos(φ)
(γ2 + r′2)3/2

= sin(φ)

∫ z2

z1

dz′
γ√

γ2 + r′2

= sin(φ)
√
γ2 + r′2

∣∣∣∣∣
r′=r2

r′=r1

∣∣∣∣∣
φ=ϕ2−ϕ

φ=ϕ1−ϕ

∣∣∣∣∣
z′=z2

z′=z1

(62)
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Hϕ =

∫ ϕ2

ϕ1

dφ

∫ r2

r1

dr′
∫ z2

z1

dz′
−γr′ sin(φ)
(γ2 + r′2)3/2

= − cos(φ)

∫ z2

z1

dz′
γ√

γ2 + r′2

= − cos(φ)
√
γ2 + r′2

∣∣∣∣∣
r′=r2

r′=r1

∣∣∣∣∣
φ=ϕ2−ϕ

φ=ϕ1−ϕ

∣∣∣∣∣
z′=z2

z′=z1

(63)

Hz =

∫ ϕ2

ϕ1

dφ

∫ r2

r1

dr′
∫ z2

z1

dz′
r′2

(γ2 + r′2)3/2

= φ

∫ z2

z1

dz′ arcsinh(
r′

|γ|
)− r′√

γ2 + r′2

∣∣∣∣∣
r′=r2

r′=r1

= φγ

(
arcsinh(

r′

|γ|
)− 1

) ∣∣∣∣∣
r′=r2

r′=r1

∣∣∣∣∣
φ=ϕ2−ϕ

φ=ϕ1−ϕ

∣∣∣∣∣
z′=z2

z′=z1

(64)

B. Validation paths

Ox =


t with t ∈ [−2, 2], 400 samples
0

0

(65)

OxD =


t with t ∈ [0.6, 1], 600 samples
0

0

(66)

OxOy+ =


t with t ∈ [−2, 2], 400 samples
1.75

0

(67)

OxOz+ =


t with t ∈ [−2, 2], 400 samples
0

1.25

(68)

Oy =


0

t with t ∈ [−2, 2], 400 samples
0

(69)

OyOx- =


−1.75
t with t ∈ [−2, 2], 400 samples
0

(70)

Oz =


0

0

t with t ∈ [−1, 1], 200 samples
(71)

Oz-Ox+Oy =


−0.5
0.5

t with t ∈ [−1, 1], 200 samples
(72)

Oz+Ox+Oy =


0.5

0.5

t with t ∈ [−1, 1], 200 samples
(73)

Diag =


t with t ∈ [−1, 1], 200 samples
t idem
t idem

. (74)

The validation paths are depicted in figure 7.

Fig. 7: Schematic representation of the validation paths used to
validate the novel expressions.
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