• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Nonlinear Observer for Tightly Coupled Integrated Inertial Navigation Aided by RTK-GNSS Measurements

Hansen, Jakob Mahler; Johansen, Tor Arne; Sokolova, Nadezda; Fossen, Thor I.
Journal article, Peer reviewed
Accepted version
Thumbnail
Åpne
Hansen (2.156Mb)
Permanent lenke
http://hdl.handle.net/11250/2631200
Utgivelsesdato
2018
Metadata
Vis full innførsel
Samlinger
  • Institutt for teknisk kybernetikk [2182]
  • Publikasjoner fra CRIStin - NTNU [19694]
Originalversjon
IEEE Transactions on Control Systems Technology. 2018, 1-6.   10.1109/TCST.2017.2785840
Sammendrag
A modular nonlinear observer is considered for tightly coupled integration of inertial measurements with global satellite measurements. A real-time-kinematic (RTK) approach is utilized where the rover and base station measure pseudoranges, carrier-phase, and carrier-phase derived Doppler, to be used in a dual receiver configuration. The modular observer design consists of a nonlinear attitude observer and a translational motion observer (TMO). The attitude observer represents the vehicle attitude as unit quaternions and estimates the gyro bias. A TMO based on the double-differenced measurements between the rover and base station receiver is proposed. The ambiguities introduced by the carrier-phase measurements are included in the state vector and are initially considered real valued, later to be resolved to integer values. The advantages of the nonlinear observer compared with a Kalman filter are reduced computational load, no linearization requirement of the model, and proven stability. The proposed observer is verified using experimental data from flights with an unmanned aerial vehicle, where the position estimates are shown to be within 2-4 cm of a global positioning system L 1 -based RTK reference solution.
Utgiver
Institute of Electrical and Electronics Engineers (IEEE)
Tidsskrift
IEEE Transactions on Control Systems Technology

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit