• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for datateknologi og informatikk
  • Vis innførsel
  •   Hjem
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for datateknologi og informatikk
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Adaptive Intrusion Detection - Using Machine Learning in the Context of Intrusion Detection Systems

Gerstle, Nicholas Olav
Master thesis
Åpne
15032_FULLTEXT.pdf (Låst)
15032_COVER.pdf (Låst)
15032_ATTACHMENT.zip (Låst)
Permanent lenke
http://hdl.handle.net/11250/2615829
Utgivelsesdato
2016
Metadata
Vis full innførsel
Samlinger
  • Institutt for datateknologi og informatikk [3952]
Sammendrag
-This report covers an initial foray in applying a number of machine learn-

ing algorithms to the problem of classifying labeled network traffic flows in

the ISCX IDS data set. The ISCX data set was developed by the Informa-

tion Security Centre of Excellence at the University of New Brunswick and

provides a large set of labeled traffic flows suitable for testing a number

of detection techniques. A number of limitations should be noted in com-

parison to algorithms tested on the more common KDD99 data set. The

ISCX IDS data set includes only a single attack classification, in contrast

to the four attacks found in KDD99 data, and the number and distri-

bution of attacks is significantly different. Previous work has focused on

more formally structured machine learning techniques such as regression

analysis, clustering, and support vector machines. This work focuses on

comparing artificial neural networks against random forest ensembles and

support vector machines, as well as stateful vs stateless neural networks.

Random forest ensembles were found to be the most accurate through

most of the ISCX IDS data set, and were quick to train. Stateful recur-

rent neural networks did not outperformed stateless networks, though the

difference in accuracy between the two was less than that between the

recurrent network and the random forest ensemble.
Utgiver
NTNU

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit