• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Volterra operators on Hardy spaces of Dirichlet series

Brevig, Ole Fredrik; Perfekt, Karl-Mikael; Seip, Kristian
Journal article, Peer reviewed
Published version
Thumbnail
Åpne
Brevig.pdf (547.2Kb)
Permanent lenke
http://hdl.handle.net/11250/2612912
Utgivelsesdato
2019
Metadata
Vis full innførsel
Samlinger
  • Institutt for matematiske fag [1390]
  • Publikasjoner fra CRIStin - NTNU [19694]
Originalversjon
Journal für die Reine und Angewandte Mathematik. 2019, 754 179-224.   10.1515/crelle-2016-0069
Sammendrag
For a Dirichlet series symbol g.s/ D P n 1 bnn s , the associated Volterra operator Tg acting on a Dirichlet series f .s/ D P n 1 ann s is defined by the integral f 7! Z C1 s f .w/g0 .w/ dw: We show that Tg is a bounded operator on the Hardy space Hp of Dirichlet series with 0 < p < 1 if and only if the symbol g satisfies a Carleson measure condition. When appropriately restricted to one complex variable, our condition coincides with the standard Carleson measure characterization of BMOA.D/. A further analogy with classical BMO is that exp.cjgj/ is integrable (on the infinite polytorus) for some c > 0 whenever Tg is bounded. In particular, such g belong to Hp for every p < 1. We relate the boundedness of Tg to several other BMO-type spaces: BMOA in half-planes, the dual of H1 , and the space of symbols of bounded Hankel forms. Moreover, we study symbols whose coefficients enjoy a multiplicative structure and obtain coefficient estimates for m-homogeneous symbols as well as for general symbols. Finally, we consider the action of Tg on reproducing kernels for appropriate sequences of subspaces of H2 . Our proofs employ function and operator theoretic techniques in one and several variables; a variety of number theoretic arguments are used throughout the paper in our study of special classes of symbols
Utgiver
De Gryuter
Tidsskrift
Journal für die Reine und Angewandte Mathematik

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit