• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for teknisk kybernetikk
  • View Item
  •   Home
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for teknisk kybernetikk
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Embedded Control of a Wind Turbine Based on Model Driven Development

Aksønov, Sergei
Master thesis
View/Open
566507_COVER01.pdf (Locked)
566507_ATTACHMENT01.zip (Locked)
566507_FULLTEXT01.pdf (Locked)
URI
http://hdl.handle.net/11250/260745
Date
2012
Metadata
Show full item record
Collections
  • Institutt for teknisk kybernetikk [2277]
Abstract
Todays technological projects become increasingly complex. This increases the demands for seamless interaction between development tools. Problems like tool lock-in, and tool obsolescence become more significant. For large and complex projects, it is important to maximize the efficiency of the toolchain to avoid wasting time and money. To achieve this, a framework is being developed that aims to provide a seamless way to interchange tools and avoid many common problems. A demonstrator needs to be developed to validate this framework. This paper presents an implementation of a hardware-software system that can be used for that purpose. This system will rely on an integrated tool chain and thus provide grounds for experimentation using the abovementioned framework. It has been decided that this demonstrator will be in form of a wind turbine. Any other sufficiently complex hardware-software system could be used. First, the physics behind a fullscale turbine was studied. Then, several solutions for the implementation of the model were considered. A design was made and the components were chosen. A mechanical model was built, and a mathematical model was designed in Matlab Simulink. Also, a controller model was made in Matlab Simulink, which was loaded onto an industrial controller. Electrical circuits and interfaces were developed, as well as a communication protocol. In the end, verification was performed and an example usage of the demonstrator given. The result and product of this work is a platform, in shape of a scale wind turbine, for developing and validating a tool chain framework.
Publisher
Institutt for teknisk kybernetikk

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit