• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Achieving highly practical capacitance of MnO2 by using chain-like CoB alloy as support

Yan, Jingjing; Wang, Hui; Ji, Shan; Pollet, Bruno; Wang, Rongfang
Journal article, Peer reviewed
Accepted version
Thumbnail
View/Open
Post Print_Achieving Highly Practical Capacitance.pdf (1.498Mb)
URI
http://hdl.handle.net/11250/2596808
Date
2018
Metadata
Show full item record
Collections
  • Institutt for energi og prosessteknikk [3337]
  • Publikasjoner fra CRIStin - NTNU [26736]
Original version
Nanoscale. 2018, 10 (16), 7813-7820.   10.1039/c8nr01004h
Abstract
The practical performance of MnO2 as a capacitor material is limited mainly by its poor electronic conductivity. Arranging MnO2 on the conductive backbone to form a unique hierarchical nanostructure is an efficient way to enhance its capacitor performance. Herein, a hierarchically core–shell structure, in which thin γ-MnO2 sheets are grown on amorphous CoB alloy nano-chains (CoB@MnO2), is produced via a simple and scalable solution-phase procedure at room temperature. A specific capacitance of 612.0 F g−1 is obtained for the CoB@MnO2 capacitor electrode at a discharge current density of 0.5 A g−1, a value higher than those obtained for other conductive materials supported MnO2 electrodes reported in the literature. A rate retention value of 60.9% of its initial capacitance is obtained when the discharge current density increased by 12-fold. It is found that after 6000 charge–discharge cycles at 2 A g−1, the specific performance of CoB@MnO2 is 86.5%. The excellent capacitor performance of CoB@MnO2 is explained to be due to the hierarchical core–shell structure, in which the CoB alloy nano-chain backbone provides a transport pathway for the electron, and the porous MnO2 outer layers provide the channel for mass transfer, hence allowing further exposure to active sites. The combination of high capacitor performance and low-cost synthesis makes the core–shell CoB@MnO2 a promising cathode material for alkaline electrolyte supercapacitors.
Publisher
Royal Society of Chemistry
Journal
Nanoscale

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit