• norsk
    • English
  • norsk 
    • norsk
    • English
  • Logg inn
Vis innførsel 
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
  •   Hjem
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • Vis innførsel
JavaScript is disabled for your browser. Some features of this site may not work without it.

Achieving highly practical capacitance of MnO2 by using chain-like CoB alloy as support

Yan, Jingjing; Wang, Hui; Ji, Shan; Pollet, Bruno; Wang, Rongfang
Journal article, Peer reviewed
Accepted version
Thumbnail
Åpne
Post Print_Achieving Highly Practical Capacitance.pdf (1.498Mb)
Permanent lenke
http://hdl.handle.net/11250/2596808
Utgivelsesdato
2018
Metadata
Vis full innførsel
Samlinger
  • Institutt for energi og prosessteknikk [2623]
  • Publikasjoner fra CRIStin - NTNU [19744]
Originalversjon
Nanoscale. 2018, 10 (16), 7813-7820.   10.1039/c8nr01004h
Sammendrag
The practical performance of MnO2 as a capacitor material is limited mainly by its poor electronic conductivity. Arranging MnO2 on the conductive backbone to form a unique hierarchical nanostructure is an efficient way to enhance its capacitor performance. Herein, a hierarchically core–shell structure, in which thin γ-MnO2 sheets are grown on amorphous CoB alloy nano-chains (CoB@MnO2), is produced via a simple and scalable solution-phase procedure at room temperature. A specific capacitance of 612.0 F g−1 is obtained for the CoB@MnO2 capacitor electrode at a discharge current density of 0.5 A g−1, a value higher than those obtained for other conductive materials supported MnO2 electrodes reported in the literature. A rate retention value of 60.9% of its initial capacitance is obtained when the discharge current density increased by 12-fold. It is found that after 6000 charge–discharge cycles at 2 A g−1, the specific performance of CoB@MnO2 is 86.5%. The excellent capacitor performance of CoB@MnO2 is explained to be due to the hierarchical core–shell structure, in which the CoB alloy nano-chain backbone provides a transport pathway for the electron, and the porous MnO2 outer layers provide the channel for mass transfer, hence allowing further exposure to active sites. The combination of high capacitor performance and low-cost synthesis makes the core–shell CoB@MnO2 a promising cathode material for alkaline electrolyte supercapacitors.
Utgiver
Royal Society of Chemistry
Tidsskrift
Nanoscale

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit
 

 

Bla i

Hele arkivetDelarkiv og samlingerUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifterDenne samlingenUtgivelsesdatoForfattereTitlerEmneordDokumenttyperTidsskrifter

Min side

Logg inn

Statistikk

Besøksstatistikk

Kontakt oss | Gi tilbakemelding

Personvernerklæring
DSpace software copyright © 2002-2019  DuraSpace

Levert av  Unit