• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Optimization of complex simulation models with stochastic gradient methods

Gaivoronski, Alexei A.
Chapter
Accepted version
Thumbnail
View/Open
Gaivoronski (481.3Kb)
URI
http://hdl.handle.net/11250/2594056
Date
2018
Metadata
Show full item record
Collections
  • Institutt for industriell økonomi og teknologiledelse [1895]
  • Publikasjoner fra CRIStin - NTNU [19757]
Original version
http://dx.doi.org/10.1109/HPCS.2018.00131
Abstract
We describe the structure of stochastic optimization solver SQG (Stochastic QuasiGradient), which implements stochastic gradient methods for optimization of complex stochastic simulation models. The solver finds the equilibrium solution when the simulation model describes the system with several actors. The solver is parallelizable and it performs several simulation threads in parallel. It is capable of solving stochastic optimization problems, finding stochastic Nash equilibria, stochastic bilevel problems where each level may require the solution of stochastic optimization problem or finding Nash equilibrium. We provide several complex examples with applications to water resources management, energy markets, pricing of services on social networks.
Publisher
IEEE

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit