
Optimization of complex simulation models with
stochastic gradient methods

Alexei A. Gaivoronski
Department of Industrial Economics and Technology Management

Norwegian University of Science and Technology
Trondheim, Norway

Alexei.Gaivoronski@ntnu.no

Abstract—We describe the structure of stochastic optimiza-
tion solver SQG (Stochastic QuasiGradient), which implements
stochastic gradient methods for optimization of complex stochas-
tic simulation models. The solver finds the equilibrium solution
when the simulation model describes the system with several
actors. The solver is parallelizable and it performs several simu-
lation threads in parallel. It is capable of solving stochastic opti-
mization problems, finding stochastic Nash equilibria, stochastic
bilevel problems where each level may require the solution of
stochastic optimization problem or finding Nash equilibrium.
We provide several complex examples with applications to water
resources management, energy markets, pricing of services on
social networks.

Index Terms—stochactic optimization, stochastic equilibrium,
optimization of simulation models, stochastic gradient methods

I. INTRODUCTION

This paper describes the solver SQG, which implements
stochastic (quasi)gradient methods for solution of stochastic
optimization problems. Its particular strength lies in its ca-
pability to solve the problems with substantial nonlinearities
and optimize functions, defined by complex stochastic sim-
ulation models. It can also solve the stochastic equilibrium
problems of different types when the studied system includes
constellations of independent actors, choosing their own deci-
sions. Finding Nash equilibrium and solving bilevel stochastic
optimization problems and stochastic Stackelberg games are
among the capabilities of this solver. Also in the case of
equilibrium problems the payoff functions of individual actors
can be obtained by simulation models.

The simplest problem addressed by SQG is

min
x∈X

Ef (x, ω) (1)

which finds the values of decision variables x of a single actor
on the feasible set X ⊆ Rn. Expectation in (1) is taken with
respect to the vector of random parameters ω, which models
the uncertainty and is defined on appropriate probability space.
The SQG solves this problem by generating the sequence of
points xs starting from some initial point x0 and applying the
recursive rule

xs+1 = ΠX (xs − ρsξs) (2)

where ΠX (·) is the projection operator on set X, ξs is a sta-
tistical estimate of the gradient of function F (x) = Ef (x, ω)
at point xs, meaning that it satisfies the property

E (ξs | Bs) = Fx(xs) + bs (3)

where the conditional expectation in (3) is taken with respect
to the σ−field Bs describing the history of the process and
bs is some diminishing term. The step size ρs satisfies the
property

ρs ≥ 0,

∞∑
s=0

ρs =∞, (4)

which is weaker than what is normally required in stochas-
tic approximation [1] because for optimization purposes we
need a weaker notion of convergence than what is normally
expected in statistics. Under additional technical assumptions
the sequence xs converges to the solution of (1) [2], [3], [4].

The basic problem (1) is used in SQG as a building block
for construction of considerably more complex problems, in-
cluding the equilibrium and bilevel problems mentioned above.
Besides, SQG has the capability to process the problems where
the expectation operators are present not only in the objective
(1), but also in constraints. Such problems occur, for example,
in portfolio optimization with risk constraints [5]. This and
other capabilities, like integration with simulation models,
required substantial additional conceptual and algorithmic
development, described in the rest of the paper.

In Section II we define the three level problem hierarchy
implemented in SQG together with the basic algorithmic tools
utilized there. This follows by discussion of challenges of
concurrent optimization and simulation, showing the approach
taken by SQG on this issue in Section III. Section IV describes
examples of applied problems solved by SQG, concentrating
on concurrent simulation and optimization.

We do not present in this paper the mathematical results on
the convergence of algorithms, which underlie the operation
of SQG. For such results we refer a reader to [2], [3], [1], [6].

II. PROBLEM HIERARCHY IN SQG

SQG is developed for solution of stochastic optimization
and equilibrium problems involving decision models of I ≥ 1
actors. We refer to an instance of such problems as stochastic



decision problem (StDP). Such instance is defined by a col-
lection of functions Φ, which is the basic structure in SQG:

Φ =
{
fij
(
xi, x−i, yi, ω

)
, i = 1 : I, j = 0 : Ji

}
(5)

Here xi ∈ Rni is the vector of decision variables of actor i,
while x−i is the vector of decision variables of all other actors,
x−i =

{
xl, l = 1 : I, l 6= i

}
. We denote by x the vector of all

decision variables: x =
(
xi, x−i

)
for any i. The vectors xi

take values from feasibility sets Xi and collection Ψ of these
sets constitute another basic structure in SQG:

Ψ = {Xi, i = 1 : I} (6)

The vector ω is the vector of all uncertain parameters in the
decision models of all actors. We consider ω to be a random
vector defined on appropriate probability space (Ω,B,P) with
Ω being the event set equipped with σ-field B, on which the
probability measure P is defined.

The vector yi is the vector of state variables of the decision
model of actor i. It is assumed that the state yi evolves in
discrete time t = 1 : T, where the time horizon T can be finite
or infinite. Then the state yi takes the value yit at time period
t. The subsequent values of state variables are connected with
the state equation

yi,t+1 = Θi
(
xi, x−i, yit, ω

)
(7)

The functions Θi can be quite complex and be defined by
a simulation model. We define by Θ = Θi, i = 1 : I
the collection of all state equations for all actors. The SQG
provides the meta language and conventions for defining the
structure (Φ,Ψ,Θ) described above. Some of the elements of
this structure can be empty. In particular, the state variables
yi can be absent, then the state equations (7) and the notion
of time disappear. In this case the decision problems become
static. Besides, the set of actors can contain a single actor,
I = 1. In this case there will be no stochastic equilibrium
problem and StDP will become a stochastic optimization
problem. We shall simplify our notations appropriately in such
cases. For example, the functions from (5) will be denoted
fj (x, ω) , j = 1 : J in the case of the single actor without the
state variables.

Starting from some initial point xi0, i = 1 : I the SQG
generates iteratively the sequence of points xis possibly with
additional auxiliary sequences, which converge in a certain
probabilistic sense to the solution of collection of problems
defined on the structure (Φ,Ψ,Θ) while the number of itera-
tions s tends to infinity. Naturally, the SQG solver does not
perform the infinite number of iterations, instead it stops the
iteration process when a certain stopping criterion is satisfied.
The solved problems and corresponding iterative processes are
organized in the hierarchy shown on Figure 1.

A. Lower level: estimation (E level)

Obtain statistical estimates of the values and gradients of
functions Fij

(
xi, x−i

)
, which are expected values of functions

from (5). These estimates serve as an input to the upper
levels of the problem hierarchy as specified in what follows.

More precisely, SQG computes these estimates for one of the
following functions

Fij

(
xi, x−i

)
= Efij

(
xi, x−i, ω

)
(8)

Fij

(
xi, x−i

)
= E

1

T

T∑
t=1

fij
(
xi, x−i, yit, ω

)
(9)

Fij

(
xi, x−i

)
= E lim

T→∞

1

T

T∑
t=1

fij
(
xi, x−i, yit, ω

)
(10)

where E is the expectation operator with respect to random
variables ω. The case (8) occurs in the absence of the state
variables yi. The case (9) refers to the dynamic problem with
the finite time horizon, while the case (10) deals with the
estimation of the steady state function values on the infinite
time horizon.

1a. Estimation of function values. These estimates are
obtained by the moving average iterative process

F s+1
ij =

(
1− αs

iF
s
ij

)
+ αs

iϕ
s
ij (11)

where ϕs
ij is an observation of the quantities under the

expectation sign in (8)-(10) satisfying the property

E
(
ϕs
ij | Bs

)
= Fij

(
xis, x−is

)
+ asij (12)

where asij tends to zero with s → ∞ and Bs is the σ−field
describing the history of the iterative process, which generates
the sequences

(
xis, F s

ij

)
prior to iteration s. Some examples

of observations ϕs
ij :

ϕs
ij = fij

(
xis, x−is, ωs

)
(13)

ϕs
ij =

1

T

T∑
t=1

fij
(
xis, x−is, yis, ωst

)
(14)

ϕs
ij = fij

(
xis, x−is, yis, ωs

)
(15)

where ωs and ωst, s = 1, ..., t = 1, ... are independent
observations of random parameters ω. In expressions above
(13) corresponds to (8), (14) corresponds to (9) and (15)
corresponds to (10). In the case (15),(10) the time step t
corresponds to a single iteration step s. That is, in order to
obtain the new update of the estimate F s

ij through the process
(11) it is enough to simulate the dynamics of the system for
just one time step obtaining the observation ωs of random
parameters, computing yis as in (7):

yis = Θi
(
xis, x−is, yi,s−1, ωs

)
and obtaining ϕs

ij from (15). The SQG obtains the obser-
vations ϕs

ij by calling the external function fun written by
the SQG user following the interface rules, which make it
callable from SQG. This function takes as the input the
values

(
xis, x−is

)
and additionally the value of yi,s−1 in case

(15). Its output comprises the value ϕs
ij and the new state

yis in the case (15). During the call this function generates
the new observation ωs of the random parameters, if it is
required by the estimation process. The value of the additional



input parameter signals this necessity to fun. Alternatively,
in the case of several concurrent estimation processes with
different inputs of decision parameters, this function provides
the observations of ϕs

ij with the same values of random
parameters. See the section on estimation of the gradient for
the explanation of such necessity.

The estimates F s
ij are fed to the upper levels of the problem

hierarchy, where they are used in the iterative solution process
of the upper level problems. In particular, they are used in the
stopping criterion of the whole iterative process, for the output
of the optimal values of the objective functions, for estimation
of gradients and for processing of constraints. They should
satisfy the following fundamental convergence property∣∣F s

ij − Fij

(
xis, x−is

)∣∣→ 0 (16)

in a certain probabilistic sense as s → ∞. In other words,
we do not need here the precise estimates of the function
values from (8)-(10) for any fixed value of decision variables(
xi, x−i

)
. Instead, the estimates should trace with gradually

increasing precision the changing value of these functions
while

(
xis, x−is

)
changes in the course of iterations. This

is a very mild requirement, allowing to make only a single
observation of random parameters and a single estimation step
per one update of decision parameters

(
xis, x−is

)
. However, it

requires a specific coordination between the estimation process
(11) and the iterative updating process of decision variables(
xi, x−i

)
. Namely, the steps αs

i from (11) should be larger
than the updating steps for the decision variables and their
ratio should asymptotically approach infinity.

Besides tracing the values of functions (8)-(10) at changing(
xis, x−is

)
, other concurrent estimation processes of type (11)

may compute the estimates F ls
ij , which trace the values of

these functions for other sequences of points
(
xils, x−ils

)
,

which are connected with the original sequence. In particular,
the output of such estimation processes may be used on the
upper levels of the problem hierarchy for the estimation of the
gradients of functions (8)-(10) using finite differences. In this
case one can take

xils = xis + δsi e
i
l, l = 1 : ni (17)

where eil is a unit vector of space Rni .
1b. Estimation of gradient values. The SQG computes the

estimates ξsij of the gradient of function Fij

(
xi, x−i

)
at point(

xis, x−is
)

from (8)-(10) with respect to variables xi. These
estimates are sent to the higher levels of the problem hierarchy
and should satisfy the following condition

E
(
ξsij | Bs

)
= ∇xiFij

(
xis, x−is

)
+ bsij (18)

where bsij tends to zero with s→∞. There are two possibil-
ities

- The user includes the computation of ξsij in the body of
the external function fun. Then this function returns the value
of ξsij with each call of fun performed by SQG. This option
is preferable when it is relatively easy to compute one of the
following entities

ξsij = ∇xifij
(
xis, x−is, ωs

)
(19)

ξsij =
1

T

T∑
t=1

∇xifij
(
xis, x−is, yis, ωst

)
(20)

ξsij = ∇xifij
(
xis, x−is, yis, ωs

)
, (21)

which similarly to (13)-(15) corresponds to the cases (8)-(10).
- The complexity of functions (8)-(10) typical of simulation

models makes it difficult to compute the values (19)-(21)
directly. Then the estimates ξsij are computed by the estimation
level of SQG using only the function observations (12) and
function estimates (11). In order to do this ni + 1 tracing
moving average processes (11) are performed in parallel for
the same sequence of observations of random parameters ωs

or ωst and ni + 1 sequences of decision parameters xis, xils

from (17). These processes produce the estimates F s
ij , F

ls
ij and

the SQG computes

ξsij =
1

δsi

ni∑
l=1

(
F ls
ij − F s

ij

)
(22)

Figure 1. Problem and process hierarchy in SQG

B. Intermediate level: optimization (O level)

This level takes the values of the estimates F s
ij , ξ

s
ij supplied

by the estimation level and generates the sequences xis, i =
1 : I, s = 1, ... which solves the following problem

” min
xi

” (” max ”) Fi0

(
xi, x−i

)
(23)

subject to
Fij

(
xi, x−i

)
≤ 0, j = 1 : J (24)

xi ∈ Xi (25)

That is, the generated sequence xis attempts to minimize or
maximize the objective Fi0

(
xi, x−i

)
of actor i with respect

to decision variables xi of this actor. Such sequences are
generated for each actor. These sequences may or may not



actually converge to the solution of respective optimization
problems due to dependence of the objectives not only on the
decision variables of respective actors, but also on decision
variables of all actors. Still, depending on the coordination
between the step sizes used for their generation, the sequences
may converge to the solution of optimization problems in a
certain sense. In other cases they will converge to the solutions
of equilibrium problems, defined on the upper level of the
problem hierarchy. For this reason we put min or max from
(23) in quotation marks. In the case of a single actor the
problem (23)-(25) reduces to a proper optimization problem.
We drop the index i then and the problem becomes the
following:

min
x∈X

(max) F0 (x) (26)

subject to
Fj (x) ≤ 0, j = 1 : J (27)

The problem (23)-(25) looks similar to deterministic non-
linear optimization (or equilibrium) problems. This similarity
is deceitful, however, because functions Fij

(
xi, x−i

)
, usually

can not be computed with precision required for application of
deterministic nonlinear programming techniques. This is due
to the presence of the expectation operator in the definition of
these functions (8)-(10), which can not be computed precisely
for the problems of realistic dimensions and complexity.
Therefore the problem (23)-(25) belongs to the family of
stochastic optimization (or equilibrium) problems [7]. Another
reasons are long computing times necessary for precise simu-
lations, when these functions are obtained through simulation
models, and the transient dynamic behavior in the case of
the steady state optimization (10) discussed in more detail in
Section III.

The SQG generates the sequences xis following the stochas-
tic gradient iteration similar to (2):

xi,s+1 = ΠXi

xis − ρis
ξsi0 +

mi∑
j=1

Cijη
s
ijξ

s
ij

 (28)

ηsij = max
(
0, F s

ij

)
∨ 1{F s

ij>0} (29)

Observe that in the case of a single actor, i = 1 and the
absence of expectation type constraints, mi = 0, the sequence
(28),(29) coincides with the basic SQG process (2). In the
case of several actors the step size ρis is individual for actor i.
This is important for solution of bilevel stochastic optimization
problems and Stackelberg games. The second term in the
internal parenthesis in (28) is dedicated to processing of
expectation constraints. It makes (28) to be a basic SQG
process of type (2) for minimization of function Fi0

(
xi, x−i

)
with added penalty term, which penalizes the violation of
constraints (24). The positive constant Cij is the penalty
coefficient, vector ξsij is the stochastic gradient of constraint
satisfying (18) and ηsij from (29) indicates the violation of
constraint. Since exact values of Fij

(
xi, x−i

)
are unknown,

ηsij substitutes them with the estimates F s
ij provided by the

estimation level of the problem hierarchy. The two alternatives
for ηsij shown in (29) correspond to two types of penalties.
The first alternative is the classical quadratic penalty, while
the second one is the nonsmooth linear penalty. In the case
of maximization the signs in (28) are changed to the opposite
ones.

C. Upper level: equilibrium problems (Q level)

This level constructs specific problem types and their solu-
tions from solution sequences xis and function estimates F s

ij

provided by the two lower levels, see Figure 1. We consider
the following four problem types.

3a. Stochastic optimization (SO). This is the simples type of
SQG problems with the empty third level of SQG hierarchy.
In this case only single actor is present, i = 1. The problem
formulation is shown in (26)-(27) where Fj (x) can belong
to one of the types (8)-(10). Observe that also the problems
of this type can be quite complex because they may include
expectation constraints (27) and the observations of functions
Fj (x) can be obtained by complex simulations.

3b. Bilevel stochastic optimization (BSO). These problems
are known otherwise as leader-follower games or Stackelberg
games with two actors [8]. We describe them here in the
interpretation of the leader-follower game. In this case there
are two actors, i = 2. The actor 1 called the leader announces
his decision x̄1 to actor 2 called the follower. Knowing the
decision of the leader the follower chooses his decision x̄2

solving stochastic optimization problem

min
x2∈X2

F20

(
x2, x̄1

)
(30)

F2j

(
x2, x̄1

)
≤ 0, j = 1 : J (31)

for fixed x1 = x̄1. In this way the decision x̄2 will depend
on x̄1 : x̄2 = x̄2

(
x̄1
)
. Knowing this, the leader chooses his

decision solving the problem

min
x1∈X1

F10

(
x1, x̄2

(
x1
))

(32)

F1j

(
x1, x̄2

(
x1
))
≤ 0, j = 1 : J (33)

Bilevel optimization problems are quite challenging numer-
ically even in the deterministic linear case. The SQG solves
them by running two concurrent SQG processes (28)-(29) with
asymptotically vanishing ratio between leader and follower
step sizes: ρ1s/ρ2s → 0.

3c. Stochastic Nash equilibrium (SNE). In this case we have
I > 1 actors with payoffs Fi0

(
xi, x−i

)
having one of the

types (8)-(10) and possible constraints (24). The SQG runs I
concurrent SQG processes (28)-(29), which under additional
technical assumptions converge to the Nash equilibrium [9] if
it exists.

3d. Bilevel stochastic Nash equilibrium (BSNE). This is the
combination of problems 3b and 3c. There are leader and
follower levels as in (30)-(33), but there are I1 ≥ 1 leaders
and I2 ≥ 1 followers, I = I1 + I2. Suppose that the actors
i = 1 : I1 are the leaders and the actors i = I1 + 1 : I are
the followers. Then SQG runs I concurrent SQG processes



(28)-(29) with asymptotically vanishing ratios between leader
step sizes and follower step sizes: ρis/ρls → 0 if 1 ≤ i ≤ I1
and I1 + 1 ≤ j ≤ I.

We emphasize here again that in all the problem types
mentioned above the payoff and constraint functions can
originate from complex simulations.

III. CONCURRENT OPTIMIZATION AND SIMULATION WITH
SQG

Here we discuss in more detail the issues regarding in-
tegration of simulation and optimization using SQG. As
we have mentioned above, the functions fij

(
xi, x−i, ω

)
or

fij
(
xi, x−i, yit, ω

)
from (8)-(10) can result from running of

complex simulation model implemented by user inside func-
tion fun required by SQG. Such simulation can be quite com-
plex, include in its body yes or no decisions of actors based
on reaching of certain triggering quantities certain thresholds,
like acceptance or rejection of an investment project based
on the predictions of profit. Or, decision to release a certain
amount of water from a reservoir based on the level of water
in it. It can also include solutions of simpler equilibrium or
optimization problems.

Figure 2. Concurrent optimization and simulation on the
infinite horizon

To be more specific, let us consider optimization of the
steady state function Fij

(
xi, x−i

)
on the infinite horizon

(10), operating in discrete time t = 1, ..., where we assume
that the state transformation from yit to yi,t+1 is performed
by simulation model. We describe here how the optimal or
equilibrium values of decision variables xi can be obtained
using I +

∑
i ni parallel simulation runs. In this case one

simulation time step t coincides with one SQG iteration s from
(28), so we use t also for indexing of SQG iterations. The
concurrent simulation and optimization process is presented
on Figure 2. It is performed as follows.

1. Initialization. At the start the initial values xi0 are se-
lected as the starting points for SQG iterations (28). Simulation
processes Λli, i = 1 : I, l = 0 : ni are initialized. The
points xi0 are sent to simulation processes Λ0i and points xil0,
l = 1 : ni obtained as in (17) for s = 0 are sent to processes
Λli, l = 1 : ni. The initial values of simulation state variables
yil0 for processes Λli are selected: yil0 = yi0 for l = 0 : ni.

2. Generic step. By the beginning of simulation step t
the current approximation to the optimal values of decision
variables are xit and the current states of the simulation
processes are yilt. The following actions are performed at step
t.

2a. SQG sends decision variables to simulation processes.
The points xit are sent to simulation processes Λ0i and points
xilt, obtained as in (17) for s = t are sent to processes Λli,
l = 1 : ni.

2b. Observation of random parameters. The new observa-
tion ωt of random parameters Λli common to all simulation
processes is made.

2c. Simulation step. Simulation processes Λli obtain the ob-
servations fij

(
xi, x−i, yit, ω

)
and update the respective state

variables yilt to yil,t+1 with equation (7), where xi = xilt,
x−i = x−it, yit = yilt, ω = ωt for process Λli.

2d. Simulation processes send function observations to
SQG. The observations fij

(
xilt, x−it, yit, ωt

)
are sent to

SQG.
2e. SQG updates the decision variables. SQG uses ob-

servations of fij
(
xilt, x−it, yit, ωt

)
obtained from simulation

processes to update the function estimates F t
ij , F

lt
ij as in (11),

compute stochastic gradients ξtij as in (22) and obtain the
update of decision variables xi,t+1 as in (28).

2f. Checking of stopping criterion. Stopping criterion is
checked and if satisfied the value of xi,t+1 or its average over
all or part of preceding iterations is taken as the solution of the
problem, see [10], Otherwise the computations proceed with
step t+ 1.

In this way the optimal or equilibrium values of decision
parameters will be obtained during a single concurrent run of
I +

∑
i ni simulations. For a finite simulation horizon as in

(9) one has two choices. If T is small enough then the updates
of decision parameters as in (28) can be made after the whole
simulation run is performed and the values of the averaged
observations as in the right hand side of (9) are sent to the
SQG. If T is large then the updates can be performed after
each simulated time step as in the case of the infinite time
horizon described above.
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In the case of the finite time horizon the alternative meth-
ods like nonlinear programming algorithms (NLP) or genetic
algorithms encounter additional pitfalls related to the sample
average approximation [11]. This approach generates a large
sample M of observations ωm and substitutes the original
problem with expectation functions Fij

(
xi, x−i

)
from (9) by

sample average approximation FM
ij

(
xi, x−i

)
of these func-

tions:

FM
ij

(
xi, x−i

)
=

1

M

M∑
m=1

1

T

T∑
t=1

fij
(
xi, x−i, yitm, ωm

)
. (34)

The optimal or equilibrium values of the decision variables are
obtained then by solving the appropriate problem with func-
tions FM

ij

(
xi, x−i

)
using a variety of methods from nonlinear

optimization approaches to genetic algorithms. This approach
encounters substantial difficulties in the very common case
when the simulation model includes yes or no decisions.
In such cases the approximate functions FM

ij

(
xi, x−i

)
will

be discontinuous for any finite M even when the limiting
functions Fij

(
xi, x−i

)
exhibit smooth and unimodal behavior.

Figures 3,4 show one example with equilibrium problem on
simulation model of energy market. The decision variables
there are the thresholds, which trigger the acceptance of
investment projects in energy sector: following the industry
practice the project is accepted when the forecasted Return On
Investment (ROI) exceeds the given threshold. It is necessary
to find here the equilibrium values of the acceptance thresh-
olds. The Figures 3,4 show that the functions FM

ij

(
xi, x−i

)
are

discontinuous and piecewise constant for any finite M , which
provide insurmountable difficulties for the NLP methods and
even for genetic algorithms. The stochastic gradients succeed
in finding the solution here because they address directly the
expectation functions Fij

(
xi, x−i

)
, which are smooth and

well behaved.

IV. EXAMPLES

The SQG was applied to solution of complex optimization
and equilibrium problems on simulation models: pricing of
services on social networks [6], optimization of water re-
sources networks [12], maritime transportation [13], energy
markets [14].

V. IMPLEMENTATION

SQG runs on top of Matlab using descriptive language for
defining the problem hierarchy (Section II) and the solver
parameters. Matlab Parallel Computing Toolbox is used for
parallelization.

VI. CONCLUSION

SQG is a powerful tool for solving a variety of stochastic
optimization and equilibrium problems on realistic simulation
models.
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