• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
  •   Home
  • Øvrige samlinger
  • Publikasjoner fra CRIStin - NTNU
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Real-Time Parameter Estimation of Nonlinear Vessel Steering Model Using Support Vector Machine

Xu, Haitong; Hassani, Vahid; Hinostroza, Miguel; Soares, C. Guedes
Chapter
Published version
Thumbnail
View/Open
Xu (1.980Mb)
URI
http://hdl.handle.net/11250/2593423
Date
2018
Metadata
Show full item record
Collections
  • Institutt for marin teknikk [2352]
  • Publikasjoner fra CRIStin - NTNU [19849]
Original version
10.1115/OMAE2018-78234
Abstract
The Least-square support vector machine (LS-SVM) is used to estimate the dynamic parameters of a nonlinear marine vessel steering model in real-time. First, manoeuvring tests are carried out based on a scaled free-running ship model. The parameters are estimated using standard LS-SVM and compared with the theoretical solutions. Then, an online version, a sequential least square support vector machine, is derived and used to estimate the parameters of vessel steering in real-time. The results are compared with the values estimated by standard LS-SVM with batched training data. By comparison, sequential least square support vector machine can dynamically estimate the parameters successfully, and it can be used for designing a dynamic model-based controller of marine vessels.
Publisher
ASME

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit