• norsk
    • English
  • English 
    • norsk
    • English
  • Login
View Item 
  •   Home
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for matematiske fag
  • View Item
  •   Home
  • Fakultet for informasjonsteknologi og elektroteknikk (IE)
  • Institutt for matematiske fag
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Modelling and Inference for Bayesian Bivariate Animal Models using Integrated Nested Laplace Approximations

Bøhn, Eirik Dybvik
Master thesis
Thumbnail
View/Open
730496_COVER01.pdf (184.1Kb)
730496_FULLTEXT01.pdf (1.225Mb)
URI
http://hdl.handle.net/11250/259302
Date
2014
Metadata
Show full item record
Collections
  • Institutt for matematiske fag [1435]
Abstract
In this study we focus on performing inference on bivariate animal models using Integrated Nested Laplace Approximation (INLA). INLA is a methodology for making fast non-sampling based Bayesian inference for hierarchical Gaussian Markov models. Animal models are generalized mixed models (GLMM) used in evolutionary biology and animal breeding to identify the genetic part of traits. Bivariate animal models are derived and shown to fit the INLA framework. Simulation studies are conducted to evaluate the performance of the models. The models are fitted to a real data set of Scots pine to investigate correlations and dependencies.
Publisher
Institutt for matematiske fag

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit
 

 

Browse

ArchiveCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsDocument TypesJournalsThis CollectionBy Issue DateAuthorsTitlesSubjectsDocument TypesJournals

My Account

Login

Statistics

View Usage Statistics

Contact Us | Send Feedback

Privacy policy
DSpace software copyright © 2002-2019  DuraSpace

Service from  Unit